How to use the albumentations.augmentations.functional function in albumentations

To help you get started, we’ve selected a few albumentations examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github albumentations-team / albumentations / tests / test_keypoint.py View on Github external
def test_keypoint_rotate90(keypoint, expected, factor):
    actual = F.keypoint_rot90(keypoint, factor, rows=100, cols=200)
    assert actual == expected
github albumentations-team / albumentations / albumentations / augmentations / transforms.py View on Github external
def apply(self, image, **params):
        return F.linear_transformation_rgb(image, self.sepia_transformation_matrix)
github albumentations-team / albumentations / benchmark / benchmark.py View on Github external
def albumentations(self, img):
        if img.ndim == 3 and img.shape[2] > 1 and img.dtype == np.uint8:
            return albumentations.hflip_cv2(img)
        else:
            return albumentations.hflip(img)
github albumentations-team / albumentations / albumentations / augmentations / transforms.py View on Github external
def apply(self, image, ksize=3, **params):
        return F.gaussian_blur(image, ksize)
github albumentations-team / albumentations / albumentations / augmentations / transforms.py View on Github external
def apply(self, img, **params):
        return F.from_float(img, self.dtype, self.max_value)
github albumentations-team / albumentations / albumentations / augmentations / transforms.py View on Github external
def apply(self, img, scale=0, interpolation=cv2.INTER_LINEAR, **params):
        return F.scale(img, scale, interpolation)
github albumentations-team / albumentations / albumentations / augmentations / transforms.py View on Github external
def apply(self, img, interpolation=cv2.INTER_LINEAR, **params):
        return F.smallest_max_size(img, max_size=self.max_size, interpolation=interpolation)
github albumentations-team / albumentations / albumentations / augmentations / transforms.py View on Github external
def apply_to_bbox(self, bbox, angle, scale, dx, dy, interpolation=cv2.INTER_LINEAR, **params):
        return F.bbox_shift_scale_rotate(bbox, angle, scale, dx, dy, interpolation=cv2.INTER_LINEAR, **params)
github albumentations-team / albumentations / albumentations / augmentations / transforms.py View on Github external
def apply_to_bbox(self, bbox, crop_height=0, crop_width=0, h_start=0, w_start=0, rows=0, cols=0, **params):
        return F.bbox_random_crop(bbox, crop_height, crop_width, h_start, w_start, rows, cols)

albumentations

Fast, flexible, and advanced augmentation library for deep learning, computer vision, and medical imaging. Albumentations offers a wide range of transformations for both 2D (images, masks, bboxes, keypoints) and 3D (volumes, volumetric masks, keypoints) data, with optimized performance and seamless integration into ML workflows.

MIT
Latest version published 7 months ago

Package Health Score

64 / 100
Full package analysis