How to use the albumentations.Transpose function in albumentations

To help you get started, we’ve selected a few albumentations examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github buriy / dlbench / tests / cpu_preprocess.py View on Github external
def strong_aug(p=0.5):
    return Compose(
        [
            RandomRotate90(),
            Flip(),
            Transpose(),
            IAAPerspective(),
            OneOf([IAAAdditiveGaussianNoise(), GaussNoise()], p=0.2),
            OneOf([MotionBlur(p=0.2), MedianBlur(blur_limit=3, p=0.1), Blur(blur_limit=3, p=0.1)], p=0.2),
            ShiftScaleRotate(shift_limit=0.0625, scale_limit=0.2, rotate_limit=45, p=0.2),
            OneOf([OpticalDistortion(p=0.3), GridDistortion(p=0.1), IAAPiecewiseAffine(p=0.3)], p=0.2),
            OneOf([CLAHE(clip_limit=2), IAASharpen(), IAAEmboss(), RandomBrightnessContrast()], p=0.3),
            HueSaturationValue(p=0.3),
            Resize(256, 256, p=1, always_apply=True),
        ],
        p=p,
    )
github albumentations-team / albumentations / tests / test_augmentations.py View on Github external
        [Transpose, {}],
        [RandomRotate90, {}],
        [Rotate, {}],
        [ShiftScaleRotate, {}],
        [OpticalDistortion, {}],
        [GridDistortion, {}],
        [ElasticTransform, {}],
        [CenterCrop, {"height": 10, "width": 10}],
        [RandomCrop, {"height": 10, "width": 10}],
        [CropNonEmptyMaskIfExists, {"height": 10, "width": 10}],
        [RandomResizedCrop, {"height": 10, "width": 10}],
        [RandomSizedCrop, {"min_max_height": (4, 8), "height": 10, "width": 10}],
        [ISONoise, {}],
        [RandomGridShuffle, {}],
    ],
)
def test_dual_augmentations(augmentation_cls, params, image, mask):
github albumentations-team / albumentations / tests / test_transforms.py View on Github external
        [A.Transpose, {}],
        [A.RandomRotate90, {}],
        [A.Rotate, {}],
        [A.OpticalDistortion, {}],
        [A.GridDistortion, {}],
        [A.ElasticTransform, {}],
        [A.Normalize, {}],
        [A.ToFloat, {}],
        [A.FromFloat, {}],
        [A.ChannelDropout, {}],
        [A.Solarize, {}],
        [A.Posterize, {}],
        [A.Equalize, {}],
        [A.MultiplicativeNoise, {}],
    ],
)
def test_additional_targets_for_image_only(augmentation_cls, params):
github mrlzla / kaggle_salt / dataset / albumentations.py View on Github external
def aug_mega_hardcore(p=.95):
    return Compose([
        OneOf([
            CLAHE(clip_limit=2),
            IAASharpen(p=.25),
            IAAEmboss(p=.25)
        ], p=.35),
        OneOf([
            IAAAdditiveGaussianNoise(p=.3),
            GaussNoise(p=.7),
        ], p=.5),
        RandomRotate90(),
        Flip(),
        Transpose(),
        OneOf([
            MotionBlur(p=.2),
            MedianBlur(blur_limit=3, p=.3),
            Blur(blur_limit=3, p=.5),
        ], p=.4),
        OneOf([
            RandomContrast(p=.5),
            RandomBrightness(p=.5),
        ], p=.4),
        ShiftScaleRotate(shift_limit=.0, scale_limit=.45, rotate_limit=45, p=.7),
        OneOf([
            OpticalDistortion(p=0.3),
            GridDistortion(p=0.2),
            ElasticTransform(p=.2),
            IAAPerspective(p=.2),
            IAAPiecewiseAffine(p=.3),
github BloodAxe / pytorch-toolbelt / examples / segmentation-inria / models / factory.py View on Github external
A.ElasticTransform(alpha_affine=0, border_mode=cv2.BORDER_CONSTANT),
        ]),

        # Add occasion blur/sharpening
        A.OneOf([
            A.GaussianBlur(),
            A.MotionBlur(),
            A.IAASharpen()
        ]),

        # Crop to desired image size
        A.CenterCrop(image_size[0], image_size[1]),

        # D4 Augmentations
        A.Compose([
            A.Transpose(),
            A.RandomRotate90(),
        ], p=float(use_d4)),
        # In case we don't want to use D4 augmentations, we use flips
        A.HorizontalFlip(p=float(not use_d4)),

        # Spatial-preserving augmentations:
        A.OneOf([
            A.Cutout(),
            A.GaussNoise(),
        ]),
        A.OneOf([
            A.RandomBrightnessContrast(),
            A.CLAHE(),
            A.HueSaturationValue(),
            A.RGBShift(),
            A.RandomGamma()
github spytensor / pytorch-image-classification / dataset / augmentations.py View on Github external
A.OneOf([
            A.RGBShift(r_shift_limit=40, b_shift_limit=30, g_shift_limit=30),
            A.HueSaturationValue(hue_shift_limit=10,
                                 sat_shift_limit=10),
            A.ToGray(p=0.2),
            A.NoOp()
        ]),

        A.ChannelDropout(),
        A.RandomGridShuffle(p=0.3),

        # D4
        A.Compose([
            A.RandomRotate90(),
            A.Transpose()
        ])
github cswin / AWC / src / train_CADA.py View on Github external
RandomBrightnessContrast,
    IAASharpen, IAAEmboss
)

from models.unet_fine import UNet
from models.discriminator import FCDiscriminator, EncoderDiscriminator
from dataset.refuge_Vmiccai import REFUGE
from pytorch_utils import (adjust_learning_rate, adjust_learning_rate_D,
                           calc_mse_loss, Weighted_Jaccard_loss, dice_loss)
from models import optim_weight_ema
from arguments import get_arguments


aug_student = Compose([
    OneOf([
        Transpose(p=0.5),
        HorizontalFlip(p=0.5),
        VerticalFlip(p=0.5),
        RandomRotate90(p=0.5)], p=0.2),

    OneOf([
        IAAAdditiveGaussianNoise(p=0.5),
        GaussNoise(p=0.5),
    ], p=0.2),

    OneOf([
        CLAHE(clip_limit=2),
        IAASharpen(p=0.5),
        IAAEmboss(p=0.5),
        RandomBrightnessContrast(p=0.5),
    ], p=0.2),
    HueSaturationValue(p=0.2),
github n01z3 / kaggle-pneumothorax-segmentation / n04_dataset.py View on Github external
def strong_aug(p=0.5):
    return Compose(
        [
            HorizontalFlip(p=0.5),
            RandomRotate90(p=0.4),
            Transpose(p=0.4),
            ShiftScaleRotate(shift_limit=0.0625, scale_limit=0.2, rotate_limit=45, p=0.2),
            # OneOf([
            #     ElasticTransform(alpha=120, sigma=120 * 0.05, alpha_affine=120 * 0.03),
            #     GridDistortion(),
            #     OpticalDistortion(distort_limit=2, shift_limit=0.3)
            #     ], p=0.2),
            OneOf(
                [
                    RandomContrast(),
                    RandomGamma(),
                    RandomBrightness()
                    # RandomBrightnessContrast(),
                ],
                p=0.3,
            ),
        ],
github darraghdog / rsna / scripts / efficientnetb0v3 / trainorig.py View on Github external
png = [os.path.basename(png)[:-4] for png in png]
png = np.array(png)
train = train.set_index('Image').loc[png].reset_index()

# get fold
valdf = train[train['fold']==fold].reset_index(drop=True)
trndf = train[train['fold']!=fold].reset_index(drop=True)
    
# Data loaders
transform_train = Compose([
    #ShiftScaleRotate(),
    #CenterCrop(height = SIZE//10, width = SIZE//10, p=0.3),
    HorizontalFlip(p=0.5),
    ShiftScaleRotate(shift_limit=0.1, scale_limit=0.1, 
                         rotate_limit=20, p=0.3, border_mode = cv2.BORDER_REPLICATE),
    Transpose(p=0.5),
    ToTensor()
])

transform_test= Compose([
    ToTensor()
])

trndataset = IntracranialDataset(trndf, path=dir_train_img, transform=transform_train, labels=True)
valdataset = IntracranialDataset(valdf, path=dir_train_img, transform=transform_test, labels=False)
tstdataset = IntracranialDataset(test, path=dir_test_img, transform=transform_test, labels=False)

num_workers = 16
trnloader = DataLoader(trndataset, batch_size=batch_size, shuffle=True, num_workers=num_workers)
valloader = DataLoader(valdataset, batch_size=batch_size*4, shuffle=False, num_workers=num_workers)
tstloader = DataLoader(tstdataset, batch_size=batch_size*4, shuffle=False, num_workers=num_workers)
github albumentations-team / albumentations / albumentations / pytorch / augmentations / dual / transforms.py View on Github external
class VerticalFlipTorch(BasicTransformTorch, A.VerticalFlip):
    def apply(self, img, **params):
        return F.vflip(img)


class HorizontalFlipTorch(BasicTransformTorch, A.HorizontalFlip):
    def apply(self, img, **params):
        return F.hflip(img)


class FlipTorch(BasicTransformTorch, A.Flip):
    def apply(self, img, d=0, **params):
        return F.random_flip(img, d)


class TransposeTorch(BasicTransformTorch, A.Transpose):
    def apply(self, img, **params):
        return F.transpose(img)


class LongestMaxSizeTorch(BasicTransformTorch, A.LongestMaxSize):
    def apply(self, img, interpolation="nearest", **params):
        return F.longest_max_size(img, max_size=self.max_size, interpolation=interpolation)


class SmallestMaxSizeTorch(BasicTransformTorch, A.SmallestMaxSize):
    def apply(self, img, interpolation="nearest", **params):
        return F.smallest_max_size(img, max_size=self.max_size, interpolation=interpolation)


class ResizeTorch(BasicTransformTorch, A.Resize):
    def apply(self, img, interpolation="nearest", **params):