How to use the albumentations.HorizontalFlip function in albumentations

To help you get started, we’ve selected a few albumentations examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github lyakaap / Landmark2019-1st-and-3rd-Place-Solution / experiments / v7.py View on Github external
def build_transforms(mean=(0.485, 0.456, 0.406),
                     std=(0.229, 0.224, 0.225),
                     divide_by=255.0,
                     scale_range=0.1,
                     brightness_range=0.1):

    from src import torch_custom

    # CSAIL ResNet
    # norm = Normalize(mean=(102.9801, 115.9465, 122.7717), std=(1., 1., 1.), max_pixel_value=1, p=1.0)
    norm = Normalize(mean=mean, std=std, max_pixel_value=divide_by)

    train_transform = Compose([
        torch_custom.RandomCropThenScaleToOriginalSize(limit=scale_range, p=1.0),
        RandomBrightness(limit=brightness_range, p=0.5),
        HorizontalFlip(p=0.5),
        norm,
    ])
    eval_transform = Compose([
        norm,
    ])

    return train_transform, eval_transform
github Erlemar / Understanding-Clouds-from-Satellite-Images / augs.py View on Github external
def get_training_augmentation1(image_size: tuple = (320, 640)):
    """

    Args:
        image_size:

    Returns:

    """
    train_transform = [
        albu.HorizontalFlip(p=0.5),
        albu.ShiftScaleRotate(scale_limit=0.3, rotate_limit=15, shift_limit=0.1, p=0.5, border_mode=0),
        albu.GridDistortion(p=0.5),
        albu.OpticalDistortion(p=0.5, distort_limit=0.1, shift_limit=0.2),
        albu.Resize(*image_size),
    ]
    return albu.Compose(train_transform)
github nyoki-mtl / pytorch-segmentation / src / train.py View on Github external
with open(log_dir.joinpath('history.pkl'), 'rb') as f:
        history_dict = pickle.load(f)
        best_metrics = history_dict['best_metrics']
        loss_history = history_dict['loss']
        iou_history = history_dict['iou']
        start_epoch = len(iou_history)
        for _ in range(start_epoch):
            scheduler.step()
else:
    start_epoch = 0
    best_metrics = 0
    loss_history = []
    iou_history = []

# Dataset
affine_augmenter = albu.Compose([albu.HorizontalFlip(p=.5),
                                 # Rotate(5, p=.5)
                                 ])
# image_augmenter = albu.Compose([albu.GaussNoise(p=.5),
#                                 albu.RandomBrightnessContrast(p=.5)])
image_augmenter = None
train_dataset = Dataset(affine_augmenter=affine_augmenter, image_augmenter=image_augmenter,
                        net_type=net_type, **data_config)
valid_dataset = Dataset(split='valid', net_type=net_type, **data_config)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4,
                          pin_memory=True, drop_last=True)
valid_loader = DataLoader(valid_dataset, batch_size=1, shuffle=False, num_workers=4, pin_memory=True)

# To device
model = model.to(device)

# Pretrained model
github n01z3 / kaggle-pneumothorax-segmentation / legacy / predict_fold.py View on Github external
sublist = []
			for index, row in tqdm.tqdm(sample_df.iterrows(), total=len(sample_df)):
				image_id = row['ImageId']
				if image_id in masks_:
					tta_img = []
					tta_preds = []
					img_path = os.path.join('input/test_png', image_id + '.png')

					img = imread(img_path)
					# print ("data1: ",img.shape)
					width, height = img.shape[0], img.shape[1]
					img = imresize(img, (IMG_SIZE, IMG_SIZE), interp='bilinear')
					# print ("data2: ",img.shape)


					aug_HFlip = albumentations.HorizontalFlip(p=1)
					# aug_Rot90 = albumentations.Transpose(p=1)
					augmented1 = aug_HFlip(image=img)
					# augmented2 = aug_Rot90(image=img)

					img1 = augmented1['image']
					# img2 = augmented2['image']

					tta_img.append(img)
					tta_img.append(img1)
					# tta_img.append(img2)
					inx = 0
					# print ("data2: ",img.shape)
					for img in tta_img:
						img = img[np.newaxis,np.newaxis,:,:]
						img = torch.FloatTensor(img)
github Diyago / Severstal-Steel-Defect-Detection / logs / exp 1 val dice 0.75047 LB 0.90386 / code / common_blocks / dataloader.py View on Github external
def get_transforms(phase, mean, std):
    list_transforms = []
    if phase == "train":
        list_transforms.extend(
            [   #CropNonEmptyMaskIfExists(crop_image_size, crop_image_size),
                HorizontalFlip(p=0.5),  # only horizontal flip as of now
            ]
        )
    list_transforms.extend(
        [
            Normalize(mean=mean, std=std, p=1),
            ToTensor(),
        ]
    )
    list_trfms = Compose(list_transforms)
    return list_trfms
github BloodAxe / Catalyst-Inria-Segmentation-Example / inria / augmentations.py View on Github external
def safe_augmentations():
    return A.Compose([A.HorizontalFlip(), A.RandomBrightnessContrast(), A.Normalize()])
github ternaus / iglovikov_segmentation / configs / fpn_resnext50_32x4d_cityscapes_2gpu_a.py View on Github external
normalization = albu.Normalize(mean=mean, std=std, p=1)

train_augmentations = albu.Compose(
    [
        albu.RandomSizedCrop(
            min_max_height=(
                int(0.5 * (train_parameters["height_crop_size"])),
                int(2 * (train_parameters["height_crop_size"])),
            ),
            height=train_parameters["height_crop_size"],
            width=train_parameters["width_crop_size"],
            w2h_ratio=1.0,
            p=1,
        ),
        albu.HorizontalFlip(p=0.5),
        normalization,
    ],
    p=1,
)

val_augmentations = albu.Compose(
    [
        albu.PadIfNeeded(
            min_height=1024, min_width=2048, border_mode=cv2.BORDER_CONSTANT, mask_value=ignore_index, p=1
        ),
        normalization,
    ],
    p=1,
)

test_augmentations = albu.Compose([normalization], p=1)
github microsoft / seismic-deeplearning / experiments / interpretation / dutchf3_patch / train.py View on Github external
value=0,
            ),
            Resize(
                config.TRAIN.AUGMENTATIONS.RESIZE.HEIGHT, config.TRAIN.AUGMENTATIONS.RESIZE.WIDTH, always_apply=True,
            ),
            PadIfNeeded(
                min_height=config.TRAIN.AUGMENTATIONS.PAD.HEIGHT,
                min_width=config.TRAIN.AUGMENTATIONS.PAD.WIDTH,
                border_mode=config.OPENCV_BORDER_CONSTANT,
                always_apply=True,
                mask_value=255,
            ),
        ]
    )
    if config.TRAIN.AUGMENTATION:
        train_aug = Compose([basic_aug, HorizontalFlip(p=0.5)])
        val_aug = basic_aug
    else:
        train_aug = val_aug = basic_aug

    # Training and Validation Loaders:
    TrainPatchLoader = get_patch_loader(config)
    logging.info(f"Using {TrainPatchLoader}")

    train_set = TrainPatchLoader(config, split="train", is_transform=True, augmentations=train_aug, debug=debug,)
    logger.info(train_set)

    n_classes = train_set.n_classes
    val_set = TrainPatchLoader(config, split="val", is_transform=True, augmentations=val_aug, debug=debug,)

    logger.info(val_set)
github darraghdog / rsna / scripts / resnext101v13 / trainorig.py View on Github external
png = glob.glob(os.path.join(dir_train_img1, '*.jpg'))
png = [os.path.basename(png)[:-4] for png in png]
png = np.array(png)
train = train.set_index('Image').loc[png].reset_index()

# get fold
valdf = train[train['fold']==fold].reset_index(drop=True)
trndf = train[train['fold']!=fold].reset_index(drop=True)

# Data loaders
mean_img = [0.22363983, 0.18190407, 0.2523437 ]
std_img = [0.32451536, 0.2956294,  0.31335256]
transform_train = Compose([
    #ShiftScaleRotate(),
    #CenterCrop(height = SIZE//10, width = SIZE//10, p=0.3),
    HorizontalFlip(p=0.5),
    ShiftScaleRotate(shift_limit=0.05, scale_limit=0.05, 
                         rotate_limit=20, p=0.3, border_mode = cv2.BORDER_REPLICATE),
    Transpose(p=0.5),
    Normalize(mean=mean_img, std=std_img, max_pixel_value=255.0, p=1.0),
    ToTensor()
])

HFLIPVAL = 1.0 if HFLIP == 'T' else 0.0
TRANSPOSEVAL = 1.0 if TRANSPOSE == 'P' else 0.0
transform_test= Compose([
    HorizontalFlip(p=HFLIPVAL),
    Transpose(p=TRANSPOSEVAL),
    Normalize(mean=mean_img, std=std_img, max_pixel_value=255.0, p=1.0),
    ToTensor()
])
github darraghdog / rsna / scripts / trainorig.py View on Github external
png = [os.path.basename(png)[:-4] for png in png]
train_imgs = set(train.Image.tolist())
png = [p for p in png if p in train_imgs]
logger.info('Number of images to train on {}'.format(len(png)))
png = np.array(png)
train = train.set_index('Image').loc[png].reset_index()

# get fold
valdf = train[train['fold']==fold].reset_index(drop=True)
trndf = train[train['fold']!=fold].reset_index(drop=True)

# Data loaders
mean_img = [0.22363983, 0.18190407, 0.2523437 ]
std_img = [0.32451536, 0.2956294,  0.31335256]
transform_train = Compose([
    HorizontalFlip(p=0.5),
    ShiftScaleRotate(shift_limit=0.05, scale_limit=0.05, 
                         rotate_limit=20, p=0.3, border_mode = cv2.BORDER_REPLICATE),
    Transpose(p=0.5),
    Normalize(mean=mean_img, std=std_img, max_pixel_value=255.0, p=1.0),
    ToTensor()
])

HFLIPVAL = 1.0 if HFLIP == 'T' else 0.0
TRANSPOSEVAL = 1.0 if TRANSPOSE == 'P' else 0.0
transform_test= Compose([
    HorizontalFlip(p=HFLIPVAL),
    Transpose(p=TRANSPOSEVAL),
    Normalize(mean=mean_img, std=std_img, max_pixel_value=255.0, p=1.0),
    ToTensor()
])

albumentations

Fast, flexible, and advanced augmentation library for deep learning, computer vision, and medical imaging. Albumentations offers a wide range of transformations for both 2D (images, masks, bboxes, keypoints) and 3D (volumes, volumetric masks, keypoints) data, with optimized performance and seamless integration into ML workflows.

MIT
Latest version published 7 months ago

Package Health Score

64 / 100
Full package analysis