Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
[A.Blur, {}],
[A.MotionBlur, {}],
[A.MedianBlur, {}],
[A.GaussianBlur, {}],
[A.GaussNoise, {}],
[A.CLAHE, {}],
[A.ChannelShuffle, {}],
[A.InvertImg, {}],
[A.RandomGamma, {}],
[A.ToGray, {}],
[A.Cutout, {}],
[A.GaussNoise, {}],
[A.RandomSnow, {}],
[A.RandomRain, {}],
[A.RandomFog, {}],
[A.RandomSunFlare, {}],
[A.RandomShadow, {}],
def get_train_transform():
crop_height = 256
crop_width = 256
return albu.Compose([
albu.PadIfNeeded(min_height=crop_height, min_width=crop_width, p=1),
albu.RandomSizedCrop((int(0.3 * crop_height), 288), crop_height, crop_width, p=1),
albu.HorizontalFlip(p=0.5),
albu.OneOf([
albu.IAAAdditiveGaussianNoise(p=0.5),
albu.GaussNoise(p=0.5),
], p=0.2),
albu.OneOf([
albu.MotionBlur(p=0.2),
albu.MedianBlur(blur_limit=3, p=0.1),
albu.Blur(blur_limit=3, p=0.1),
], p=0.2),
albu.ShiftScaleRotate(shift_limit=0.0625, scale_limit=0, rotate_limit=20, p=0.1),
albu.OneOf([
albu.OpticalDistortion(p=0.3),
albu.GridDistortion(p=0.1),
albu.IAAPiecewiseAffine(p=0.3),
], p=0.2),
albu.OneOf([
albu.CLAHE(clip_limit=2, p=0.5),
albu.IAASharpen(p=0.5),
albu.IAAEmboss(p=0.5),
albu.RandomBrightnessContrast(p=0.5),
], p=0.3),
albu.HueSaturationValue(p=0.3),
albu.JpegCompression(p=0.2, quality_lower=20, quality_upper=99),
albu.ElasticTransform(p=0.1),
int(0.5 * (train_parameters["height_crop_size"])),
int(2 * (train_parameters["height_crop_size"])),
),
height=train_parameters["height_crop_size"],
width=train_parameters["width_crop_size"],
w2h_ratio=1.0,
p=1,
),
albu.ShiftScaleRotate(
border_mode=cv2.BORDER_CONSTANT, rotate_limit=10, scale_limit=0, p=0.5, mask_value=ignore_index
),
albu.RandomBrightnessContrast(p=0.5),
albu.RandomGamma(p=0.5),
albu.ImageCompression(quality_lower=20, quality_upper=100, p=0.5),
albu.GaussNoise(p=0.5),
albu.Blur(p=0.5),
albu.CoarseDropout(p=0.5, max_height=26, max_width=16),
albu.OneOf([albu.HueSaturationValue(p=0.5), albu.RGBShift(p=0.5)], p=0.5),
normalization,
],
p=1,
)
val_augmentations = albu.Compose(
[
albu.PadIfNeeded(
min_height=1024, min_width=2048, border_mode=cv2.BORDER_CONSTANT, mask_value=ignore_index, p=1
),
normalization,
],
p=1,
)
int(0.5 * (train_parameters["height_crop_size"])),
int(2 * (train_parameters["height_crop_size"])),
),
height=train_parameters["height_crop_size"],
width=train_parameters["width_crop_size"],
w2h_ratio=1.0,
p=1,
),
albu.ShiftScaleRotate(
border_mode=cv2.BORDER_CONSTANT, rotate_limit=10, scale_limit=0, p=0.5, mask_value=ignore_index
),
albu.RandomBrightnessContrast(p=0.5),
albu.RandomGamma(p=0.5),
albu.ImageCompression(quality_lower=20, quality_upper=100, p=0.5),
albu.GaussNoise(p=0.5),
albu.Blur(p=0.5),
albu.CoarseDropout(p=0.5, max_height=26, max_width=16),
albu.OneOf([albu.HueSaturationValue(p=0.5), albu.RGBShift(p=0.5)], p=0.5),
normalization,
],
p=1,
)
val_augmentations = albu.Compose(
[
albu.PadIfNeeded(
min_height=1024, min_width=2048, border_mode=cv2.BORDER_CONSTANT, mask_value=ignore_index, p=1
),
normalization,
],
p=1,
)
def get_training_augmentation2(image_size: tuple = (320, 640)):
"""
Args:
image_size:
Returns:
"""
train_transform = [
albu.Resize(*image_size),
albu.HorizontalFlip(p=0.5),
albu.ShiftScaleRotate(scale_limit=0.3, rotate_limit=15, shift_limit=0.1, p=0.5, border_mode=0),
albu.GridDistortion(p=0.5),
albu.OpticalDistortion(p=0.5, distort_limit=0.1, shift_limit=0.2),
albu.Blur(),
albu.RandomBrightnessContrast()
]
return albu.Compose(train_transform)
y1 = random.randint(0, height - hole_height)
x1 = random.randint(0, width - hole_width)
y2 = y1 + hole_height
x2 = x1 + hole_width
holes.append((x1, y1, x2, y2))
return {"holes": holes}
class RandomSnowTorch(A.RandomSnow):
def apply(self, image, snow_point=0.1, **params):
return F.add_snow(image, snow_point, self.brightness_coeff)
class BlurTorch(A.Blur):
def apply(self, image, ksize=3, **params):
ksize = A.to_tuple(ksize, ksize)
return F.blur(image, ksize)
class HueSaturationValueTorch(A.HueSaturationValue):
def apply(self, image, hue_shift=0, sat_shift=0, val_shift=0, **params):
return F.shift_hsv(image, hue_shift, sat_shift, val_shift)
class SolarizeTorch(A.Solarize):
def apply(self, image, threshold=0, **params):
return F.solarize(image, threshold)
class RGBShiftTorch(A.RGBShift):
int(0.5 * (train_parameters["height_crop_size"])),
int(2 * (train_parameters["height_crop_size"])),
),
height=train_parameters["height_crop_size"],
width=train_parameters["width_crop_size"],
w2h_ratio=1.0,
p=1,
),
albu.ShiftScaleRotate(
border_mode=cv2.BORDER_CONSTANT, rotate_limit=10, scale_limit=0, p=0.5, mask_value=ignore_index
),
albu.RandomBrightnessContrast(p=0.5),
albu.RandomGamma(p=0.5),
albu.ImageCompression(quality_lower=20, quality_upper=100, p=0.5),
albu.GaussNoise(p=0.5),
albu.Blur(p=0.5),
albu.CoarseDropout(p=0.5, max_height=26, max_width=16),
albu.OneOf([albu.HueSaturationValue(p=0.5), albu.RGBShift(p=0.5)], p=0.5),
normalization,
],
p=1,
)
val_augmentations = albu.Compose(
[
albu.PadIfNeeded(
min_height=1024, min_width=2048, border_mode=cv2.BORDER_CONSTANT, mask_value=ignore_index, p=1
),
normalization,
],
p=1,
)
transform_cls, args, image_path, targets=targets, nrows=nrows, ncols=ncols, height=height, width=width, dpi=dpi
)
save_results(transform_cls, text, image, save_path)
if show:
show_image(image, dpi=dpi)
if __name__ == "__main__":
import albumentations as A
save_path = "../docs/augs_overview/image_only/image_only.rst"
image_path = "../notebooks/images/parrot.jpg"
transform = A.Blur
args = [{"blur_limit": [7, 7]}, {"blur_limit": [14, 14]}, {"blur_limit": [28, 28]}, {"blur_limit": [56, 56]}]
create_and_save(save_path, transform, args, image_path)
int(0.5 * (train_parameters["height_crop_size"])),
int(2 * (train_parameters["height_crop_size"])),
),
height=train_parameters["height_crop_size"],
width=train_parameters["width_crop_size"],
w2h_ratio=1.0,
p=1,
),
albu.ShiftScaleRotate(
border_mode=cv2.BORDER_CONSTANT, rotate_limit=10, scale_limit=0, p=0.5, mask_value=ignore_index
),
albu.RandomBrightnessContrast(p=0.5),
albu.RandomGamma(p=0.5),
albu.ImageCompression(quality_lower=20, quality_upper=100, p=0.5),
albu.GaussNoise(p=0.5),
albu.Blur(p=0.5),
albu.CoarseDropout(p=0.5, max_height=26, max_width=16),
albu.OneOf([albu.HueSaturationValue(p=0.5), albu.RGBShift(p=0.5)], p=0.5),
normalization,
],
p=1,
)
val_augmentations = albu.Compose(
[
albu.PadIfNeeded(
min_height=1024, min_width=2048, border_mode=cv2.BORDER_CONSTANT, mask_value=ignore_index, p=1
),
normalization,
],
p=1,
)