How to use the albumentations.GaussNoise function in albumentations

To help you get started, we’ve selected a few albumentations examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github buriy / dlbench / tests / cpu_preprocess.py View on Github external
def strong_aug(p=0.5):
    return Compose(
        [
            RandomRotate90(),
            Flip(),
            Transpose(),
            IAAPerspective(),
            OneOf([IAAAdditiveGaussianNoise(), GaussNoise()], p=0.2),
            OneOf([MotionBlur(p=0.2), MedianBlur(blur_limit=3, p=0.1), Blur(blur_limit=3, p=0.1)], p=0.2),
            ShiftScaleRotate(shift_limit=0.0625, scale_limit=0.2, rotate_limit=45, p=0.2),
            OneOf([OpticalDistortion(p=0.3), GridDistortion(p=0.1), IAAPiecewiseAffine(p=0.3)], p=0.2),
            OneOf([CLAHE(clip_limit=2), IAASharpen(), IAAEmboss(), RandomBrightnessContrast()], p=0.3),
            HueSaturationValue(p=0.3),
            Resize(256, 256, p=1, always_apply=True),
        ],
        p=p,
    )
github albumentations-team / albumentations / tests / test_augmentations.py View on Github external
        [GaussNoise, {}],
        [ToFloat, {}],
        [FromFloat, {}],
        [RandomGridShuffle, {}],
        [Solarize, {}],
        [Posterize, {}],
        [Equalize, {}],
        [MultiplicativeNoise, {}],
    ],
)
def test_augmentations_wont_change_shape_grayscale(augmentation_cls, params, image, mask):
    aug = augmentation_cls(p=1, **params)

    # Test for grayscale image
    image = np.zeros((224, 224), dtype=np.uint8)
    mask = np.zeros((224, 224))
    result = aug(image=image, mask=mask)
github ternaus / iglovikov_segmentation / configs / fpn_se_resnext101_32x4d_cityscapes_2V100b.py View on Github external
min_max_height=(
                int(0.5 * (train_parameters["height_crop_size"])),
                int(2 * (train_parameters["height_crop_size"])),
            ),
            height=train_parameters["height_crop_size"],
            width=train_parameters["width_crop_size"],
            w2h_ratio=1.0,
            p=1,
        ),
        albu.ShiftScaleRotate(
            border_mode=cv2.BORDER_CONSTANT, rotate_limit=10, scale_limit=0, p=0.5, mask_value=ignore_index
        ),
        albu.RandomBrightnessContrast(p=0.5),
        albu.RandomGamma(p=0.5),
        albu.ImageCompression(quality_lower=20, quality_upper=100, p=0.5),
        albu.GaussNoise(p=0.5),
        albu.Blur(p=0.5),
        albu.CoarseDropout(p=0.5, max_height=26, max_width=16),
        albu.OneOf([albu.HueSaturationValue(p=0.5), albu.RGBShift(p=0.5)], p=0.5),
        normalization,
    ],
    p=1,
)

val_augmentations = albu.Compose(
    [
        albu.PadIfNeeded(
            min_height=1024, min_width=2048, border_mode=cv2.BORDER_CONSTANT, mask_value=ignore_index, p=1
        ),
        normalization,
    ],
    p=1,
github mrlzla / kaggle_salt / dataset / albumentations.py View on Github external
def aug_mega_hardcore(p=.95):
    return Compose([
        OneOf([
            CLAHE(clip_limit=2),
            IAASharpen(p=.25),
            IAAEmboss(p=.25)
        ], p=.35),
        OneOf([
            IAAAdditiveGaussianNoise(p=.3),
            GaussNoise(p=.7),
        ], p=.5),
        RandomRotate90(),
        Flip(),
        Transpose(),
        OneOf([
            MotionBlur(p=.2),
            MedianBlur(blur_limit=3, p=.3),
            Blur(blur_limit=3, p=.5),
        ], p=.4),
        OneOf([
            RandomContrast(p=.5),
            RandomBrightness(p=.5),
        ], p=.4),
        ShiftScaleRotate(shift_limit=.0, scale_limit=.45, rotate_limit=45, p=.7),
        OneOf([
            OpticalDistortion(p=0.3),
github BloodAxe / pytorch-toolbelt / examples / segmentation-inria / models / factory.py View on Github external
# Crop to desired image size
        A.CenterCrop(image_size[0], image_size[1]),

        # D4 Augmentations
        A.Compose([
            A.Transpose(),
            A.RandomRotate90(),
        ], p=float(use_d4)),
        # In case we don't want to use D4 augmentations, we use flips
        A.HorizontalFlip(p=float(not use_d4)),

        # Spatial-preserving augmentations:
        A.OneOf([
            A.Cutout(),
            A.GaussNoise(),
        ]),
        A.OneOf([
            A.RandomBrightnessContrast(),
            A.CLAHE(),
            A.HueSaturationValue(),
            A.RGBShift(),
            A.RandomGamma()
        ]),
        # Weather effects
        # A.OneOf([
        #     A.RandomFog(),
        #     A.RandomRain(),
        #     A.RandomSunFlare()
        # ]),

        # Normalize image to make use of pretrained model
github ternaus / iglovikov_segmentation / configs / fpn_se_resnext101_32x4d_cityscapes_2V100a.py View on Github external
min_max_height=(
                int(0.5 * (train_parameters["height_crop_size"])),
                int(2 * (train_parameters["height_crop_size"])),
            ),
            height=train_parameters["height_crop_size"],
            width=train_parameters["width_crop_size"],
            w2h_ratio=1.0,
            p=1,
        ),
        albu.ShiftScaleRotate(
            border_mode=cv2.BORDER_CONSTANT, rotate_limit=10, scale_limit=0, p=0.5, mask_value=ignore_index
        ),
        albu.RandomBrightnessContrast(p=0.5),
        albu.RandomGamma(p=0.5),
        albu.ImageCompression(quality_lower=20, quality_upper=100, p=0.5),
        albu.GaussNoise(p=0.5),
        albu.Blur(p=0.5),
        albu.CoarseDropout(p=0.5, max_height=26, max_width=16),
        albu.OneOf([albu.HueSaturationValue(p=0.5), albu.RGBShift(p=0.5)], p=0.5),
        normalization,
    ],
    p=1,
)

val_augmentations = albu.Compose(
    [
        albu.PadIfNeeded(
            min_height=1024, min_width=2048, border_mode=cv2.BORDER_CONSTANT, mask_value=ignore_index, p=1
        ),
        normalization,
    ],
    p=1,
github ternaus / giana / augmentations.py View on Github external
def get_train_transform():
    crop_height = 256
    crop_width = 256

    return albu.Compose([
        albu.PadIfNeeded(min_height=crop_height, min_width=crop_width, p=1),
        albu.RandomSizedCrop((int(0.3 * crop_height), 288), crop_height, crop_width, p=1),
        albu.HorizontalFlip(p=0.5),
        albu.OneOf([
            albu.IAAAdditiveGaussianNoise(p=0.5),
            albu.GaussNoise(p=0.5),
        ], p=0.2),
        albu.OneOf([
            albu.MotionBlur(p=0.2),
            albu.MedianBlur(blur_limit=3, p=0.1),
            albu.Blur(blur_limit=3, p=0.1),
        ], p=0.2),
        albu.ShiftScaleRotate(shift_limit=0.0625, scale_limit=0, rotate_limit=20, p=0.1),
        albu.OneOf([
            albu.OpticalDistortion(p=0.3),
            albu.GridDistortion(p=0.1),
            albu.IAAPiecewiseAffine(p=0.3),
        ], p=0.2),
        albu.OneOf([
            albu.CLAHE(clip_limit=2, p=0.5),
            albu.IAASharpen(p=0.5),
            albu.IAAEmboss(p=0.5),
github bamps53 / kaggle-severstal / transforms / transform_factory.py View on Github external
def get_transforms(phase_config):
    list_transforms = []
    if phase_config.HorizontalFlip:
        list_transforms.append(HorizontalFlip())
    if phase_config.VerticalFlip:
        list_transforms.append(VerticalFlip())
    if phase_config.RandomCropScale:
        list_transforms.extend(
            [RandomCrop(int(HEIGHT * 0.95), int(WIDTH * 0.95), p=0.5),
             Resize(HEIGHT, WIDTH, p=1)
             ]
        )
    if phase_config.Noise:
        list_transforms.append(
            OneOf([
                GaussNoise(),
                IAAAdditiveGaussianNoise(),
            ], p=0.5),
        )
    if phase_config.Contrast:
        list_transforms.append(
            OneOf([
                RandomContrast(0.5),
                RandomGamma(),
                RandomBrightness(),
            ], p=0.5),
        )

    if phase_config.RandomCropRotateScale:
        list_transforms.append(RandomCropRotateScale())
    if phase_config.Cutout.num_holes > 0:
        num_holes = phase_config.Cutout.num_holes
github ternaus / iglovikov_segmentation / configs / fpn_se_resnext101_32x4d_cityscapes_2V100.py View on Github external
min_max_height=(
                int(0.5 * (train_parameters["height_crop_size"])),
                int(2 * (train_parameters["height_crop_size"])),
            ),
            height=train_parameters["height_crop_size"],
            width=train_parameters["width_crop_size"],
            w2h_ratio=1.0,
            p=1,
        ),
        albu.ShiftScaleRotate(
            border_mode=cv2.BORDER_CONSTANT, rotate_limit=10, scale_limit=0, p=0.5, mask_value=ignore_index
        ),
        albu.RandomBrightnessContrast(p=0.5),
        albu.RandomGamma(p=0.5),
        albu.ImageCompression(quality_lower=20, quality_upper=100, p=0.5),
        albu.GaussNoise(p=0.5),
        albu.Blur(p=0.5),
        albu.CoarseDropout(p=0.5, max_height=26, max_width=16),
        albu.OneOf([albu.HueSaturationValue(p=0.5), albu.RGBShift(p=0.5)], p=0.5),
        normalization,
    ],
    p=1,
)

val_augmentations = albu.Compose(
    [
        albu.PadIfNeeded(
            min_height=1024, min_width=2048, border_mode=cv2.BORDER_CONSTANT, mask_value=ignore_index, p=1
        ),
        normalization,
    ],
    p=1,

albumentations

Fast, flexible, and advanced augmentation library for deep learning, computer vision, and medical imaging. Albumentations offers a wide range of transformations for both 2D (images, masks, bboxes, keypoints) and 3D (volumes, volumetric masks, keypoints) data, with optimized performance and seamless integration into ML workflows.

MIT
Latest version published 7 months ago

Package Health Score

64 / 100
Full package analysis