How to use the albumentations.RandomGamma function in albumentations

To help you get started, we’ve selected a few albumentations examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github albumentations-team / albumentations / tests / pytorch / test_image_only_transforms.py View on Github external
            [A.RandomGamma(), ATorch.RandomGammaTorch()],
            [A.ToFloat(), ATorch.ToFloatTorch()],
            [A.FromFloat("uint8"), ATorch.FromFloatTorch()],
        ],
    ),
)
def test_image_transforms_grayscale(images, augs):
    image, image_torch = images
    dtype = image.dtype

    aug_cpu, aug_torch = augs
    aug_cpu.p = 1
    aug_torch.p = 1

    aug_cpu = A.Compose([aug_cpu])
    aug_torch = A.Compose([aug_torch])
github albumentations-team / albumentations / tests / test_transforms.py View on Github external
        [A.RandomGamma, {}],
        [A.ToGray, {}],
        [A.VerticalFlip, {}],
        [A.HorizontalFlip, {}],
        [A.Flip, {}],
        [A.Transpose, {}],
        [A.RandomRotate90, {}],
        [A.Rotate, {}],
        [A.OpticalDistortion, {}],
        [A.GridDistortion, {}],
        [A.ElasticTransform, {}],
        [A.Normalize, {}],
        [A.ToFloat, {}],
        [A.FromFloat, {}],
        [A.ChannelDropout, {}],
        [A.Solarize, {}],
        [A.Posterize, {}],
github albumentations-team / albumentations / tests / test_serialization.py View on Github external
        [A.RandomGamma, {"gamma_limit": (10, 90)}],
        [A.Cutout, {"num_holes": 4, "max_h_size": 4, "max_w_size": 4}],
        [A.CoarseDropout, {"max_holes": 4, "max_height": 4, "max_width": 4}],
        [A.RandomSnow, {"snow_point_lower": 0.2, "snow_point_upper": 0.4, "brightness_coeff": 4}],
        [
            A.RandomRain,
            {
                "slant_lower": -5,
                "slant_upper": 5,
                "drop_length": 15,
                "drop_width": 2,
                "drop_color": (100, 100, 100),
                "blur_value": 3,
                "brightness_coefficient": 0.5,
                "rain_type": "heavy",
            },
        ],
github ternaus / iglovikov_segmentation / configs / fpn_se_resnext101_32x4d_cityscapes_2V100a.py View on Github external
[
        albu.RandomSizedCrop(
            min_max_height=(
                int(0.5 * (train_parameters["height_crop_size"])),
                int(2 * (train_parameters["height_crop_size"])),
            ),
            height=train_parameters["height_crop_size"],
            width=train_parameters["width_crop_size"],
            w2h_ratio=1.0,
            p=1,
        ),
        albu.ShiftScaleRotate(
            border_mode=cv2.BORDER_CONSTANT, rotate_limit=10, scale_limit=0, p=0.5, mask_value=ignore_index
        ),
        albu.RandomBrightnessContrast(p=0.5),
        albu.RandomGamma(p=0.5),
        albu.ImageCompression(quality_lower=20, quality_upper=100, p=0.5),
        albu.GaussNoise(p=0.5),
        albu.Blur(p=0.5),
        albu.CoarseDropout(p=0.5, max_height=26, max_width=16),
        albu.OneOf([albu.HueSaturationValue(p=0.5), albu.RGBShift(p=0.5)], p=0.5),
        normalization,
    ],
    p=1,
)

val_augmentations = albu.Compose(
    [
        albu.PadIfNeeded(
            min_height=1024, min_width=2048, border_mode=cv2.BORDER_CONSTANT, mask_value=ignore_index, p=1
        ),
        normalization,
github spytensor / pytorch-image-classification / dataset / augmentations.py View on Github external
A.RandomSizedCrop(min_max_height=(int(image_size[0] * 0.75), image_size[0]),
                              height=image_size[0],
                              width=image_size[1], p=0.3),
            A.NoOp()
        ]),

        A.ISONoise(p=0.5),
        A.JpegCompression(p=0.3, quality_lower=75),

        # Brightness/contrast augmentations
        A.OneOf([
            A.RandomBrightnessContrast(brightness_limit=0.5,
                                       contrast_limit=0.4),
            IndependentRandomBrightnessContrast(brightness_limit=0.25,
                                                contrast_limit=0.24),
            A.RandomGamma(gamma_limit=(50, 150)),
            A.NoOp()
        ]),

        A.OneOf([
            A.RGBShift(r_shift_limit=40, b_shift_limit=30, g_shift_limit=30),
            A.HueSaturationValue(hue_shift_limit=10,
                                 sat_shift_limit=10),
            A.ToGray(p=0.2),
            A.NoOp()
        ]),


        A.OneOf([
            A.ChannelDropout(p=0.2),
            A.CoarseDropout(p=0.1, max_holes=2, max_width=256, max_height=256, min_height=16, min_width=16),
            A.NoOp()
github ternaus / iglovikov_segmentation / configs / fpn_resnext50_32x4d_cityscapes_2gpu_d.py View on Github external
train_augmentations = albu.Compose(
    [
        albu.RandomSizedCrop(
            min_max_height=(
                int(0.5 * (train_parameters["height_crop_size"])),
                int(2 * (train_parameters["height_crop_size"])),
            ),
            height=train_parameters["height_crop_size"],
            width=train_parameters["width_crop_size"],
            w2h_ratio=1.0,
            p=1,
        ),
        albu.ShiftScaleRotate(rotate_limit=20, scale_limit=0, p=0.5),
        albu.RandomBrightnessContrast(p=0.5),
        albu.RandomGamma(p=0.5),
        albu.HueSaturationValue(p=0.5),
        albu.HorizontalFlip(p=0.5),
        normalization,
    ],
    p=1,
)

val_augmentations = albu.Compose(
    [
        albu.PadIfNeeded(
            min_height=1024, min_width=2048, border_mode=cv2.BORDER_CONSTANT, mask_value=ignore_index, p=1
        ),
        normalization,
    ],
    p=1,
)
github catalyst-team / segmentation / src / transforms.py View on Github external
scale_limit=0.1,
            rotate_limit=15,
            border_mode=cv2.BORDER_REFLECT,
            p=p,
        ),
        IAAPerspective(scale=(0.02, 0.05), p=p),
        OneOf([
            HueSaturationValue(p=p),
            ToGray(p=p),
            RGBShift(p=p),
            ChannelShuffle(p=p),
        ]),
        RandomBrightnessContrast(
            brightness_limit=0.5, contrast_limit=0.5, p=p
        ),
        RandomGamma(p=p),
        CLAHE(p=p),
        JpegCompression(quality_lower=50, p=p),
    ])
    return transforms
github n01z3 / kaggle-pneumothorax-segmentation / n04_dataset.py View on Github external
def strong_aug(p=0.5):
    return Compose(
        [
            HorizontalFlip(p=0.5),
            RandomRotate90(p=0.4),
            Transpose(p=0.4),
            ShiftScaleRotate(shift_limit=0.0625, scale_limit=0.2, rotate_limit=45, p=0.2),
            # OneOf([
            #     ElasticTransform(alpha=120, sigma=120 * 0.05, alpha_affine=120 * 0.03),
            #     GridDistortion(),
            #     OpticalDistortion(distort_limit=2, shift_limit=0.3)
            #     ], p=0.2),
            OneOf(
                [
                    RandomContrast(),
                    RandomGamma(),
                    RandomBrightness()
                    # RandomBrightnessContrast(),
                ],
                p=0.3,
            ),
        ],
        p=p,
    )
github ternaus / iglovikov_segmentation / configs / fpn_resnext101_32x8d_cityscapes_2V100.py View on Github external
[
        albu.RandomSizedCrop(
            min_max_height=(
                int(0.5 * (train_parameters["height_crop_size"])),
                int(2 * (train_parameters["height_crop_size"])),
            ),
            height=train_parameters["height_crop_size"],
            width=train_parameters["width_crop_size"],
            w2h_ratio=1.0,
            p=1,
        ),
        albu.ShiftScaleRotate(
            border_mode=cv2.BORDER_CONSTANT, rotate_limit=10, scale_limit=0, p=0.5, mask_value=ignore_index
        ),
        albu.RandomBrightnessContrast(p=0.5),
        albu.RandomGamma(p=0.5),
        albu.ImageCompression(quality_lower=20, quality_upper=100, p=0.5),
        albu.GaussNoise(p=0.5),
        albu.Blur(p=0.5),
        albu.CoarseDropout(p=0.5, max_height=26, max_width=16),
        albu.OneOf([albu.HueSaturationValue(p=0.5), albu.RGBShift(p=0.5)], p=0.5),
        normalization,
    ],
    p=1,
)

val_augmentations = albu.Compose(
    [
        albu.PadIfNeeded(
            min_height=1024, min_width=2048, border_mode=cv2.BORDER_CONSTANT, mask_value=ignore_index, p=1
        ),
        normalization,
github ternaus / iglovikov_segmentation / configs / fpn_se_resnext101_32x4d_cityscapes_2V100.py View on Github external
[
        albu.RandomSizedCrop(
            min_max_height=(
                int(0.5 * (train_parameters["height_crop_size"])),
                int(2 * (train_parameters["height_crop_size"])),
            ),
            height=train_parameters["height_crop_size"],
            width=train_parameters["width_crop_size"],
            w2h_ratio=1.0,
            p=1,
        ),
        albu.ShiftScaleRotate(
            border_mode=cv2.BORDER_CONSTANT, rotate_limit=10, scale_limit=0, p=0.5, mask_value=ignore_index
        ),
        albu.RandomBrightnessContrast(p=0.5),
        albu.RandomGamma(p=0.5),
        albu.ImageCompression(quality_lower=20, quality_upper=100, p=0.5),
        albu.GaussNoise(p=0.5),
        albu.Blur(p=0.5),
        albu.CoarseDropout(p=0.5, max_height=26, max_width=16),
        albu.OneOf([albu.HueSaturationValue(p=0.5), albu.RGBShift(p=0.5)], p=0.5),
        normalization,
    ],
    p=1,
)

val_augmentations = albu.Compose(
    [
        albu.PadIfNeeded(
            min_height=1024, min_width=2048, border_mode=cv2.BORDER_CONSTANT, mask_value=ignore_index, p=1
        ),
        normalization,

albumentations

Fast, flexible, and advanced augmentation library for deep learning, computer vision, and medical imaging. Albumentations offers a wide range of transformations for both 2D (images, masks, bboxes, keypoints) and 3D (volumes, volumetric masks, keypoints) data, with optimized performance and seamless integration into ML workflows.

MIT
Latest version published 7 months ago

Package Health Score

64 / 100
Full package analysis