How to use the albumentations.Compose function in albumentations

To help you get started, we’ve selected a few albumentations examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github albumentations-team / albumentations / tests / test_serialization.py View on Github external
def test_transform_pipeline_serialization(seed, image, mask):
    aug = A.Compose(
        [
            A.OneOrOther(
                A.Compose(
                    [
                        A.Resize(1024, 1024),
                        A.RandomSizedCrop(min_max_height=(256, 1024), height=512, width=512, p=1),
                        A.OneOf(
                            [
                                A.RandomSizedCrop(min_max_height=(256, 512), height=384, width=384, p=0.5),
                                A.RandomSizedCrop(min_max_height=(256, 512), height=512, width=512, p=0.5),
                            ]
                        ),
                    ]
                ),
                A.Compose(
                    [
                        A.Resize(1024, 1024),
                        A.RandomSizedCrop(min_max_height=(256, 1025), height=256, width=256, p=1),
                        A.OneOf([A.HueSaturationValue(p=0.5), A.RGBShift(p=0.7)], p=1),
github ternaus / iglovikov_segmentation / configs / fpn_resnext101_32x8d_cityscapes_2V100.py View on Github external
pad_factor = 64
imread_library = "cv2"  # can be cv2 or jpeg4py

optimizer = RAdam(
    [
        {"params": model.decoder.parameters(), "lr": train_parameters["lr"]},
        # decrease lr for encoder in order not to permute
        # pre-trained weights with large gradients on training start
        {"params": model.encoder.parameters(), "lr": train_parameters["lr"] / 100},
    ],
    weight_decay=1e-3,
)

normalization = albu.Normalize(mean=mean, std=std, p=1)

train_augmentations = albu.Compose(
    [
        albu.RandomSizedCrop(
            min_max_height=(
                int(0.5 * (train_parameters["height_crop_size"])),
                int(2 * (train_parameters["height_crop_size"])),
            ),
            height=train_parameters["height_crop_size"],
            width=train_parameters["width_crop_size"],
            w2h_ratio=1.0,
            p=1,
        ),
        albu.ShiftScaleRotate(
            border_mode=cv2.BORDER_CONSTANT, rotate_limit=10, scale_limit=0, p=0.5, mask_value=ignore_index
        ),
        albu.RandomBrightnessContrast(p=0.5),
        albu.RandomGamma(p=0.5),
github darraghdog / rsna / scripts / resnext101v5 / trainorig.py View on Github external
n_classes = 6
label_cols = ['epidural', 'intraparenchymal', 'intraventricular', 'subarachnoid', 'subdural', 'any']

train = pd.read_csv(os.path.join(path_data, 'train.csv.gz'))
test = pd.read_csv(os.path.join(path_data, 'test.csv.gz'))
png = glob.glob(os.path.join(dir_train_img, '*.jpg'))
png = [os.path.basename(png)[:-4] for png in png]
png = np.array(png)
train = train.set_index('Image').loc[png].reset_index()

# get fold
valdf = train[train['fold']==fold].reset_index(drop=True)
trndf = train[train['fold']!=fold].reset_index(drop=True)
    
# Data loaders
transform_train = Compose([
    HorizontalFlip(p=0.5),
    ShiftScaleRotate(shift_limit=0.1, scale_limit=0.01, 
                         rotate_limit=30, p=0.7, border_mode = cv2.BORDER_REPLICATE),
    ToTensor()
])


transform_test= Compose([
    ToTensor()
])

trndataset = IntracranialDataset(trndf, path=dir_train_img, transform=transform_train, labels=True)
valdataset = IntracranialDataset(valdf, path=dir_train_img, transform=transform_test, labels=False)
tstdataset = IntracranialDataset(test, path=dir_test_img, transform=transform_test, labels=False)

num_workers = 16
github spytensor / pytorch-image-classification / dataset / augmentations.py View on Github external
def get_test_transform(image_size):
    longest_size = max(image_size[0], image_size[1])
    return A.Compose([
        #Resize(int(config.img_height*1.5),int(config.img_weight*1.5)),
        CenterCrop(config.img_height,config.img_weight),
        A.LongestMaxSize(longest_size, interpolation=cv2.INTER_CUBIC),

        A.PadIfNeeded(image_size[0], image_size[1],
                      border_mode=cv2.BORDER_CONSTANT, value=0),

        A.Normalize(),
        ToTensor()
    ])
github Erlemar / Understanding-Clouds-from-Satellite-Images / augs.py View on Github external
Args:
        image_size:

    Returns:

    """
    train_transform = [
        albu.Resize(*image_size),
        albu.HorizontalFlip(p=0.5),
        albu.ShiftScaleRotate(scale_limit=0.3, rotate_limit=15, shift_limit=0.1, p=0.5, border_mode=0),
        albu.GridDistortion(p=0.5),
        albu.OpticalDistortion(p=0.5, distort_limit=0.1, shift_limit=0.2),
        albu.Blur(),
        albu.RandomBrightnessContrast()
    ]
    return albu.Compose(train_transform)
github darraghdog / rsna / scripts / efficientnetb0v5 / trainorig.py View on Github external
img = augmented['image']   
        if self.labels:
            labels = torch.tensor(
                self.data.loc[idx, label_cols])
            return {'image': img, 'labels': labels}    
        else:      
            return {'image': img}

np.random.seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
if n_gpu > 0:
    torch.cuda.manual_seed_all(SEED)
torch.backends.cudnn.deterministic = True
# Data loaders
transform_train = Compose([
    ShiftScaleRotate(),
    ToTensor()
])

transform_test= Compose([
    ToTensor()
])
    
logger.info('Load Dataframes')
dir_train_img = os.path.join(path_data, 'stage_1_train_images_jpg')
dir_test_img = os.path.join(path_data, 'stage_1_test_images_jpg')

# Parameters
n_classes = 6
label_cols = ['epidural', 'intraparenchymal', 'intraventricular', 'subarachnoid', 'subdural', 'any']
github catalyst-team / mlcomp / examples / batteries / top / experiment.py View on Github external
def transforms_train():
        return A.Compose([
            A.Resize(height=307, width=950),
            A.RandomSizedCrop(min_max_height=(230, 307), height=256, width=896, w2h_ratio=950 / 307),
            A.HorizontalFlip(),
            # A.JpegCompression(quality_lower=60, quality_upper=100),
            # A.RandomGamma(),
            A.Normalize(mean=(Experiment.mean, Experiment.mean, Experiment.mean), std=(Experiment.std, Experiment.std, Experiment.std)),
            ChannelTranspose()
        ])
github cswin / AWC / src / train.py View on Github external
HueSaturationValue,
    IAAAdditiveGaussianNoise, GaussNoise,
    RandomBrightnessContrast,
    IAASharpen, IAAEmboss
)

from models.unet import UNet
from models.discriminator import FCDiscriminator
from dataset.refuge_Vmiccai import REFUGE
from pytorch_utils import (adjust_learning_rate, adjust_learning_rate_D,
                           calc_mse_loss, Weighted_Jaccard_loss, dice_loss)
from models import optim_weight_ema
from arguments import get_arguments


aug_student = Compose([
    OneOf([
        Transpose(p=0.5),
        HorizontalFlip(p=0.5),
        VerticalFlip(p=0.5),
        RandomRotate90(p=0.5)], p=0.2),

    OneOf([
        IAAAdditiveGaussianNoise(p=0.5),
        GaussNoise(p=0.5),
    ], p=0.2),

    OneOf([
        CLAHE(clip_limit=2),
        IAASharpen(p=0.5),
        IAAEmboss(p=0.5),
        RandomBrightnessContrast(p=0.5),
github mrlzla / kaggle_salt / dataset / albumentations.py View on Github external
def strong_aug(p=1.0):
    return Compose([
        HorizontalFlip(),
        Blur(blur_limit=3),
        #GridDistortion(p=.2),
        #ShiftScaleRotate(shift_limit=0.0625, scale_limit=0.3, rotate_limit=0.0, p=0.7),
        # OneOf([
        #     GridDistortion(p=.2),
        #     ElasticTransform(p=.2)
        # ], p=0.2),
        RandomContrast(p=.5, limit=0.2),
        RandomBrightness(p=.5, limit=0.2),
        RandomGamma(),
         #RandomSizedCrop(p=0.9, min_max_height=(65, 101), height=101, width=101),
    ], p=p)

albumentations

Fast, flexible, and advanced augmentation library for deep learning, computer vision, and medical imaging. Albumentations offers a wide range of transformations for both 2D (images, masks, bboxes, keypoints) and 3D (volumes, volumetric masks, keypoints) data, with optimized performance and seamless integration into ML workflows.

MIT
Latest version published 7 months ago

Package Health Score

64 / 100
Full package analysis