How to use the albumentations.RandomRotate90 function in albumentations

To help you get started, we’ve selected a few albumentations examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github albumentations-team / albumentations / tests / test_serialization.py View on Github external
        [A.RandomRotate90, {}],
        [A.Rotate, {}],
        [A.ShiftScaleRotate, {}],
        [A.CenterCrop, {"height": 10, "width": 10}],
        [A.RandomCrop, {"height": 10, "width": 10}],
        [A.RandomSizedCrop, {"min_max_height": (4, 8), "height": 10, "width": 10}],
        [A.Crop, {"x_max": 64, "y_max": 64}],
        [A.FromFloat, {}],
        [A.ToFloat, {}],
        [A.Normalize, {}],
        [A.RandomBrightness, {}],
        [A.RandomContrast, {}],
        [A.RandomScale, {}],
        [A.Resize, {"height": 64, "width": 64}],
        [A.SmallestMaxSize, {}],
        [A.LongestMaxSize, {}],
        [A.RandomSizedBBoxSafeCrop, {"height": 50, "width": 50}],
github albumentations-team / albumentations / tests / test_serialization.py View on Github external
def test_transform_pipeline_serialization_with_bboxes(seed, image, bboxes, bbox_format, labels):
    aug = A.Compose(
        [
            A.OneOrOther(
                A.Compose([A.RandomRotate90(), A.OneOf([A.HorizontalFlip(p=0.5), A.VerticalFlip(p=0.5)])]),
                A.Compose([A.Rotate(p=0.5), A.OneOf([A.HueSaturationValue(p=0.5), A.RGBShift(p=0.7)], p=1)]),
            ),
            A.HorizontalFlip(p=1),
            A.RandomBrightnessContrast(p=0.5),
        ],
        bbox_params={"format": bbox_format, "label_fields": ["labels"]},
    )
    serialized_aug = A.to_dict(aug)
    deserialized_aug = A.from_dict(serialized_aug)
    set_seed(seed)
    aug_data = aug(image=image, bboxes=bboxes, labels=labels)
    set_seed(seed)
    deserialized_aug_data = deserialized_aug(image=image, bboxes=bboxes, labels=labels)
    assert np.array_equal(aug_data["image"], deserialized_aug_data["image"])
    assert np.array_equal(aug_data["bboxes"], deserialized_aug_data["bboxes"])
github albumentations-team / albumentations / tests / test_serialization.py View on Github external
def test_transform_pipeline_serialization_with_keypoints(seed, image, keypoints, keypoint_format, labels):
    aug = A.Compose(
        [
            A.OneOrOther(
                A.Compose([A.RandomRotate90(), A.OneOf([A.HorizontalFlip(p=0.5), A.VerticalFlip(p=0.5)])]),
                A.Compose([A.Rotate(p=0.5), A.OneOf([A.HueSaturationValue(p=0.5), A.RGBShift(p=0.7)], p=1)]),
            ),
            A.HorizontalFlip(p=1),
            A.RandomBrightnessContrast(p=0.5),
        ],
        keypoint_params={"format": keypoint_format, "label_fields": ["labels"]},
    )
    serialized_aug = A.to_dict(aug)
    deserialized_aug = A.from_dict(serialized_aug)
    set_seed(seed)
    aug_data = aug(image=image, keypoints=keypoints, labels=labels)
    set_seed(seed)
    deserialized_aug_data = deserialized_aug(image=image, keypoints=keypoints, labels=labels)
    assert np.array_equal(aug_data["image"], deserialized_aug_data["image"])
    assert np.array_equal(aug_data["keypoints"], deserialized_aug_data["keypoints"])
github catalyst-team / catalyst / examples / finetune / data.py View on Github external
def train_transform(image_size=224):
    transforms = [
        LongestMaxSize(max_size=image_size),
        PadIfNeeded(image_size, image_size, border_mode=cv2.BORDER_CONSTANT),
        ShiftScaleRotate(
            shift_limit=0.1,
            scale_limit=0.1,
            rotate_limit=45,
            border_mode=cv2.BORDER_REFLECT,
            p=0.5
        ),
        RandomRotate90(),
        JpegCompression(quality_lower=50),
        post_transform()
    ]
    transforms = Compose(transforms)
    return transforms
github BloodAxe / Catalyst-Inria-Segmentation-Example / inria / augmentations.py View on Github external
def hard_augmentations():
    return A.Compose(
        [
            A.RandomRotate90(),
            A.Transpose(),
            A.RandomGridShuffle(),
            A.ShiftScaleRotate(
                scale_limit=0.1, rotate_limit=45, border_mode=cv2.BORDER_CONSTANT, mask_value=0, value=0
            ),
            A.ElasticTransform(border_mode=cv2.BORDER_CONSTANT, alpha_affine=5, mask_value=0, value=0),
            # Add occasion blur
            A.OneOf([A.GaussianBlur(), A.GaussNoise(), A.IAAAdditiveGaussianNoise(), A.NoOp()]),
            # D4 Augmentations
            A.OneOf([A.CoarseDropout(), A.MaskDropout(max_objects=10), A.NoOp()]),
            # Spatial-preserving augmentations:
            A.OneOf(
                [
                    A.RandomBrightnessContrast(brightness_by_max=True),
                    A.CLAHE(),
                    A.HueSaturationValue(),
github spytensor / pytorch-image-classification / dataset / augmentations.py View on Github external
A.ToGray(p=0.2),
            A.NoOp()
        ]),


        A.OneOf([
            A.ChannelDropout(p=0.2),
            A.CoarseDropout(p=0.1, max_holes=2, max_width=256, max_height=256, min_height=16, min_width=16),
            A.NoOp()
        ]),

        A.RandomGridShuffle(p=0.3),

        # D4
        A.Compose([
            A.RandomRotate90(),
            A.Transpose()
        ])
github catalyst-team / catalyst / catalyst / contrib / mixin / rotate.py View on Github external
targets_key: str = None,
        rotate_probability: float = 1.,
        hflip_probability: float = 0.5,
        one_hot_classes: int = None
    ):
        """
        Args:
            input_key (str): input key to use from annotation dict
            output_key (str): output key to use to store the result
        """
        self.input_key = input_key
        self.output_key = output_key
        self.targets_key = targets_key
        self.rotate_probability = rotate_probability
        self.hflip_probability = hflip_probability
        self.rotate = A.RandomRotate90()
        self.hflip = A.HorizontalFlip()
        self.one_hot_classes = one_hot_classes * 8 \
            if one_hot_classes is not None \
            else None
github BloodAxe / pytorch-toolbelt / examples / canny-edge-detector-in-cnn / example_canny_cnn.py View on Github external
def __init__(self, images, image_size=(224, 224), training=True):
        self.images = images
        self.transform = A.Compose([
            A.Compose([
                A.PadIfNeeded(256, 256),
                A.RandomSizedCrop((128, 256), image_size[0], image_size[1]),
                A.RandomRotate90(),
                A.RandomBrightnessContrast(),
                A.GaussNoise(),
                A.Cutout(),
                A.ElasticTransform()
            ], p=float(training)),
            A.Compose([
                A.PadIfNeeded(image_size[0], image_size[1]),
                A.CenterCrop(image_size[0], image_size[1])
            ], p=float(not training))
        ])
        self.normalize = A.Normalize()
github mrlzla / kaggle_salt / dataset / albumentations.py View on Github external
def aug_mega_hardcore(p=.95):
    return Compose([
        OneOf([
            CLAHE(clip_limit=2),
            IAASharpen(p=.25),
            IAAEmboss(p=.25)
        ], p=.35),
        OneOf([
            IAAAdditiveGaussianNoise(p=.3),
            GaussNoise(p=.7),
        ], p=.5),
        RandomRotate90(),
        Flip(),
        Transpose(),
        OneOf([
            MotionBlur(p=.2),
            MedianBlur(blur_limit=3, p=.3),
            Blur(blur_limit=3, p=.5),
        ], p=.4),
        OneOf([
            RandomContrast(p=.5),
            RandomBrightness(p=.5),
        ], p=.4),
        ShiftScaleRotate(shift_limit=.0, scale_limit=.45, rotate_limit=45, p=.7),
        OneOf([
            OpticalDistortion(p=0.3),
            GridDistortion(p=0.2),
            ElasticTransform(p=.2),
github BloodAxe / pytorch-toolbelt / examples / segmentation-inria / models / factory.py View on Github external
]),

        # Add occasion blur/sharpening
        A.OneOf([
            A.GaussianBlur(),
            A.MotionBlur(),
            A.IAASharpen()
        ]),

        # Crop to desired image size
        A.CenterCrop(image_size[0], image_size[1]),

        # D4 Augmentations
        A.Compose([
            A.Transpose(),
            A.RandomRotate90(),
        ], p=float(use_d4)),
        # In case we don't want to use D4 augmentations, we use flips
        A.HorizontalFlip(p=float(not use_d4)),

        # Spatial-preserving augmentations:
        A.OneOf([
            A.Cutout(),
            A.GaussNoise(),
        ]),
        A.OneOf([
            A.RandomBrightnessContrast(),
            A.CLAHE(),
            A.HueSaturationValue(),
            A.RGBShift(),
            A.RandomGamma()
        ]),