How to use the lale.operators.make_pipeline function in lale

To help you get started, we’ve selected a few lale examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github IBM / lale / test / test_interoperability.py View on Github external
def test_decision_function(self):
        from lale.lib.imblearn import SMOTE
        from lale.operators import make_pipeline
        from lale.lib.sklearn import RandomForestClassifier
        smote = SMOTE(operator=make_pipeline(RandomForestClassifier()))
        trained = smote.fit(self.X_train, self.y_train)
        trained.predict(self.X_test)
        with self.assertRaises(AttributeError):
            trained.decision_function(self.X_test)
github IBM / lale / test / test_core_operators.py View on Github external
def test_concat_with_hyperopt2(self):
        from lale.operators import make_pipeline, make_union
        from lale.lib.lale import Hyperopt
        pca = PCA(n_components=3)
        nys = Nystroem(n_components=10)
        concat = ConcatFeatures()
        lr = LogisticRegression(random_state=42, C=0.1)

        trainable = make_pipeline(make_union(pca, nys), lr)
        clf = Hyperopt(estimator=trainable, max_evals=2)
        from sklearn.datasets import load_iris
        iris_data = load_iris()
        clf.fit(iris_data.data, iris_data.target)
        clf.predict(iris_data.data)
github IBM / lale / test / test_core_pipeline.py View on Github external
def test_export_to_sklearn_pipeline4(self):
        from lale.lib.sklearn import LogisticRegression
        from lale.operators import make_pipeline

        lale_pipeline = make_pipeline(LogisticRegression())
        trained_lale_pipeline = lale_pipeline.fit(self.X_train, self.y_train)
        sklearn_pipeline = trained_lale_pipeline.export_to_sklearn_pipeline()
        from sklearn.linear_model import LogisticRegression
        self.assertIsInstance(sklearn_pipeline.named_steps['logisticregression'], LogisticRegression)
        self.assert_equal_predictions(sklearn_pipeline, trained_lale_pipeline)
github IBM / lale / test / test_core_pipeline.py View on Github external
def test_make_pipeline(self):
        from lale.operators import make_pipeline
        tfm = PCA(n_components=10)
        clf = LogisticRegression(random_state=42)
        trainable = make_pipeline(tfm, clf)
        digits = sklearn.datasets.load_digits()
        trained = trainable.fit(digits.data, digits.target)
        predicted = trained.predict(digits.data)
    def test_compose2(self):
github IBM / lale / test / test_json_pretty_viz.py View on Github external
def test_pipeline_2(self):
        from lale.lib.lale import NoOp
        from lale.lib.sklearn import Nystroem
        from lale.lib.sklearn import PCA
        from lale.lib.sklearn import LogisticRegression
        from lale.lib.sklearn import KNeighborsClassifier
        from lale.operators import make_choice, make_pipeline
        from lale.json_operator import to_json, from_json
        kernel_tfm_or_not =  make_choice(NoOp, Nystroem)
        tfm = PCA
        clf = make_choice(LogisticRegression, KNeighborsClassifier)
        operator = make_pipeline(kernel_tfm_or_not, tfm, clf)
        json = to_json(operator)
        operator_2 = from_json(json)
        json_2 = to_json(operator_2)
        self.assertEqual(json, json_2)
github IBM / lale / test / test_json_pretty_viz.py View on Github external
def test_autoai_libs_tam_2(self):
        from lale.lib.autoai_libs import TAM
        import numpy as np
        from lightgbm import LGBMClassifier
        from sklearn.decomposition import PCA
        from lale.operators import make_pipeline
        pca = PCA(copy=False)
        tam = TAM(tans_class=pca, name='pca', col_names=['a', 'b', 'c'], col_dtypes=[np.dtype('float32'), np.dtype('float32'), np.dtype('float32')])
        lgbm_classifier = LGBMClassifier(class_weight='balanced', learning_rate=0.18)
        pipeline = make_pipeline(tam, lgbm_classifier)
        expected = \
"""from lale.lib.autoai_libs import TAM
import sklearn.decomposition.pca
import numpy as np
from lightgbm import LGBMClassifier
from lale.operators import make_pipeline

tam = TAM(tans_class=sklearn.decomposition.pca.PCA(copy=False, iterated_power='auto', n_components=None, random_state=None,   svd_solver='auto', tol=0.0, whiten=False), name='pca', col_names=['a', 'b', 'c'], col_dtypes=[np.dtype('float32'), np.dtype('float32'), np.dtype('float32')])
lgbm_classifier = LGBMClassifier(class_weight='balanced', learning_rate=0.18)
pipeline = make_pipeline(tam, lgbm_classifier)"""
        self._roundtrip(expected, lale.pretty_print.to_string(pipeline, combinators=False))
github IBM / lale / lale / helpers.py View on Github external
class_ = lale_op(**hyperparams)
        if lale_wrapper_found:
            wrapped_model = copy.deepcopy(sklearn_obj)
            class_._impl_instance()._wrapped_model = wrapped_model
        else:# If there is no lale wrapper, there is no _wrapped_model
            class_._impl = copy.deepcopy(sklearn_obj) 
        return class_

    from sklearn.pipeline import FeatureUnion, Pipeline
    from sklearn.base import BaseEstimator
    from lale.operators import make_pipeline, make_union
    if isinstance(sklearn_pipeline, Pipeline):
        nested_pipeline_steps = sklearn_pipeline.named_steps.values()
        nested_pipeline_lale_objects = [import_from_sklearn_pipeline(nested_pipeline_step, fitted=fitted) for nested_pipeline_step in nested_pipeline_steps]
        lale_op_obj = make_pipeline(*nested_pipeline_lale_objects)
    elif isinstance(sklearn_pipeline, FeatureUnion):
        transformer_list = sklearn_pipeline.transformer_list
        concat_predecessors = [import_from_sklearn_pipeline(transformer[1], fitted=fitted) for transformer in transformer_list]
        lale_op_obj = make_union(*concat_predecessors)
    else:
        lale_op_obj = get_equivalent_lale_op(sklearn_pipeline, fitted=fitted)
    return lale_op_obj
github IBM / lale / lale / grammar.py View on Github external
Explore the grammar `g` starting from `g.start` and generate all possible   choices after `n` derivations.
        
        Parameters
        ----------
        g : Grammar
            input grammar
        n : int
            number of derivations
        
        Returns
        -------
        PlannedOperator
        """
        assert hasattr(self, 'start'), "Rule start must be defined"
        op = self._unfold(self.start, n)
        return make_pipeline(op) if op else NoOp
github IBM / lale / lale / grammar.py View on Github external
def sample(self, n: int) -> PlannedOperator:
        """
        Sample the grammar `g` starting from `g.start`, that is, choose one element at random for each possible choices.
          
        Parameters
        ----------
        n : int
            number of derivations
        
        Returns
        -------
        PlannedOperator
        """
        assert hasattr(self, 'start'), "Rule start must be defined"
        op = self._sample(self.start, n)
        return make_pipeline(op) if op else NoOp