Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
self._wrapped_model = sklearn.tree.tree.DecisionTreeClassifier(**self._hyperparams)
def fit(self, X, y, **fit_params):
if fit_params is None:
self._wrapped_model.fit(X, y)
else:
self._wrapped_model.fit(X, y, **fit_params)
return self
def predict(self, X):
return self._wrapped_model.predict(X)
def predict_proba(self, X):
return self._wrapped_model.predict_proba(X)
lale.docstrings.set_docstrings(DecisionTreeClassifierImpl, _combined_schemas)
DecisionTreeClassifier = lale.operators.make_operator(DecisionTreeClassifierImpl, _combined_schemas)
'description': """Operator from `autoai_libs`_. Feature transformation via a general wrapper that can be used for most functions (may not be most efficient though).
.. _`autoai_libs`: https://pypi.org/project/autoai-libs""",
'documentation_url': 'https://lale.readthedocs.io/en/latest/modules/lale.lib.autoai_libs.ta1.html',
'type': 'object',
'tags': {
'pre': [],
'op': ['transformer'],
'post': []},
'properties': {
'hyperparams': _hyperparams_schema,
'input_fit': _input_fit_schema,
'input_transform': _input_transform_schema,
'output_transform': _output_transform_schema}}
lale.docstrings.set_docstrings(TGenImpl, _combined_schemas)
TGen = lale.operators.make_operator(TGenImpl, _combined_schemas)
'op': ['transformer', 'estimator', 'resampler'],#transformer and estimator both as a higher-order operator
'post': []},
'properties': {
'hyperparams': _hyperparams_schema,
'input_fit': _input_fit_schema,
'input_transform': _input_transform_schema,
'output_transform': _output_transform_schema,
'input_predict': _input_predict_schema,
'output_predict': _output_predict_schema,
'input_predict_proba': _input_predict_proba_schema,
'output_predict_proba': _output_predict_proba_schema,
'input_decision_function': _input_decision_function_schema,
'output_decision_function': _output_decision_function_schema
}}
lale.docstrings.set_docstrings(SMOTEENNImpl, _combined_schemas)
SMOTEENN = lale.operators.make_operator(SMOTEENNImpl, _combined_schemas)
'documentation_url': 'https://lale.readthedocs.io/en/latest/modules/lale.lib.sklearn.linear_svc.html',
'type': 'object',
'tags': {
'pre': [],
'op': ['estimator', 'classifier'],
'post': []},
'properties': {
'hyperparams': _hyperparams_schema,
'input_fit': _input_fit_schema,
'input_predict': _input_predict_schema,
'output_predict': _output_predict_schema,
'input_decision_function': _input_decision_function_schema,
'output_decision_function': _output_decision_function_schema,
}}
lale.docstrings.set_docstrings(LinearSVCImpl, _combined_schemas)
LinearSVC = lale.operators.make_operator(LinearSVCImpl, _combined_schemas)
.. _`autoai_libs`: https://pypi.org/project/autoai-libs
.. _SimpleImputer: https://scikit-learn.org/0.20/modules/generated/sklearn.impute.SimpleImputer.html#sklearn-impute-simpleimputer""",
'documentation_url': 'https://lale.readthedocs.io/en/latest/modules/lale.lib.autoai_libs.cat_imputer.html',
'type': 'object',
'tags': {
'pre': [],
'op': ['transformer'],
'post': []},
'properties': {
'hyperparams': _hyperparams_schema,
'input_fit': _input_fit_schema,
'input_transform': _input_transform_schema,
'output_transform': _output_transform_schema}}
lale.docstrings.set_docstrings(CatImputerImpl, _combined_schemas)
CatImputer = lale.operators.make_operator(CatImputerImpl, _combined_schemas)
_combined_schemas = {
'$schema': 'http://json-schema.org/draft-04/schema#',
'description': 'Combined schema for expected data and hyperparameters.',
'documentation_url': 'https://scikit-learn.org/0.20/modules/generated/sklearn.decomposition.SparsePCA#sklearn-decomposition-sparsepca',
'type': 'object',
'tags': {
'pre': [],
'op': ['transformer'],
'post': []},
'properties': {
'hyperparams': _hyperparams_schema,
'input_fit': _input_fit_schema,
'input_transform': _input_transform_schema,
'output_transform': _output_transform_schema},
}
lale.docstrings.set_docstrings(SparsePCAImpl, _combined_schemas)
SparsePCA = lale.operators.make_operator(SparsePCAImpl, _combined_schemas)
.. _`Decision tree regressor`: https://scikit-learn.org/0.20/modules/generated/sklearn.tree.DecisionTreeRegressor.html#sklearn-tree-decisiontreeregressor
""",
'documentation_url': 'https://lale.readthedocs.io/en/latest/modules/lale.lib.sklearn.decision_tree_regressor.html',
'type': 'object',
'tags': {
'pre': [],
'op': ['estimator', 'regressor'],
'post': []},
'properties': {
'hyperparams': _hyperparams_schema,
'input_fit': _input_fit_schema,
'input_predict': _input_predict_schema,
'output_predict': _output_predict_schema}}
lale.docstrings.set_docstrings(DecisionTreeRegressorImpl, _combined_schemas)
DecisionTreeRegressor = lale.operators.make_operator(DecisionTreeRegressorImpl, _combined_schemas)
'description': 'Combined schema for expected data and hyperparameters.',
'documentation_url': 'https://scikit-learn.org/0.20/modules/generated/sklearn.cluster.MiniBatchKMeans#sklearn-cluster-minibatchkmeans',
'type': 'object',
'tags': {
'pre': [],
'op': ['transformer', 'estimator'],
'post': []},
'properties': {
'hyperparams': _hyperparams_schema,
'input_fit': _input_fit_schema,
'input_transform': _input_transform_schema,
'output_transform': _output_transform_schema,
'input_predict': _input_predict_schema,
'output_predict': _output_predict_schema},
}
lale.docstrings.set_docstrings(MiniBatchKMeansImpl, _combined_schemas)
MiniBatchKMeans = lale.operators.make_operator(MiniBatchKMeansImpl, _combined_schemas)
.. _`Missing values indicator`: https://scikit-learn.org/0.20/modules/generated/sklearn.impute.MissingIndicator.html#sklearn-impute-missingindicator
""",
'documentation_url': 'https://lale.readthedocs.io/en/latest/modules/lale.lib.sklearn.missing_indicator.html',
'type': 'object',
'tags': {
'pre': [],
'op': ['transformer'],
'post': []},
'properties': {
'hyperparams': _hyperparams_schema,
'input_fit': _input_fit_schema,
'input_transform': _input_transform_schema,
'output_transform': _output_transform_schema}}
lale.docstrings.set_docstrings(MissingIndicatorImpl, _combined_schemas)
MissingIndicator = lale.operators.make_operator(MissingIndicatorImpl, _combined_schemas)
'description': 'Combined schema for expected data and hyperparameters.',
'documentation_url': 'https://scikit-learn.org/0.20/modules/generated/sklearn.naive_bayes.GaussianNB#sklearn-naive_bayes-gaussiannb',
'type': 'object',
'tags': {
'pre': [],
'op': ['estimator'],
'post': []},
'properties': {
'hyperparams': _hyperparams_schema,
'input_fit': _input_fit_schema,
'input_predict': _input_predict_schema,
'output_predict': _output_predict_schema,
'input_predict_proba': _input_predict_proba_schema,
'output_predict_proba': _output_predict_proba_schema},
}
lale.docstrings.set_docstrings(GaussianNBImpl, _combined_schemas)
GaussianNB = lale.operators.make_operator(GaussianNBImpl, _combined_schemas)