How to use the lale.lib.sklearn.KNeighborsClassifier function in lale

To help you get started, we’ve selected a few lale examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github IBM / lale / test / test_core_operators.py View on Github external
def test_make_choice_with_instance(self):
        from lale.operators import make_union, make_choice, make_pipeline
        from sklearn.datasets import load_iris
        iris = load_iris()
        X, y = iris.data, iris.target
        tfm = PCA() | Nystroem() | NoOp()
        with self.assertRaises(AttributeError):
            trained = tfm.fit(X, y)
        planned_pipeline1 = (OneHotEncoder | NoOp) >> tfm >> (LogisticRegression | KNeighborsClassifier)
        planned_pipeline2 = (OneHotEncoder | NoOp) >> (PCA | Nystroem) >> (LogisticRegression | KNeighborsClassifier)
        planned_pipeline3 = make_choice(OneHotEncoder, NoOp) >> make_choice(PCA, Nystroem) >> make_choice(LogisticRegression, KNeighborsClassifier)
github IBM / lale / test / test_optimizers.py View on Github external
def test_fit_args(self):
        from sklearn.datasets import load_iris
        from lale.lib.lale import TopKVotingClassifier
        from lale.lib.sklearn import Nystroem
        from sklearn.metrics import accuracy_score

        ensemble = TopKVotingClassifier(estimator=(PCA() | Nystroem()) >> (LogisticRegression()|KNeighborsClassifier()), k=2)
        trained = ensemble.fit(self.X_train, self.y_train)
        trained.predict(self.X_test)
github IBM / lale / test / test_core_pipeline.py View on Github external
def test_export_to_sklearn_pipeline2(self):
        from lale.lib.lale import ConcatFeatures
        from lale.lib.sklearn import PCA
        from lale.lib.sklearn import KNeighborsClassifier
        from sklearn.feature_selection import SelectKBest
        from lale.lib.sklearn import Nystroem
        from sklearn.pipeline import FeatureUnion

        lale_pipeline = (((PCA(svd_solver='randomized', random_state=42) & SelectKBest(k=3)) >> ConcatFeatures()) & Nystroem(random_state=42)) >> ConcatFeatures() >> KNeighborsClassifier()
        trained_lale_pipeline = lale_pipeline.fit(self.X_train, self.y_train)
        sklearn_pipeline = trained_lale_pipeline.export_to_sklearn_pipeline()
        self.assertIsInstance(sklearn_pipeline.named_steps['featureunion'], FeatureUnion)
        from sklearn.neighbors import KNeighborsClassifier
        self.assertIsInstance(sklearn_pipeline.named_steps['kneighborsclassifier'], KNeighborsClassifier)
        self.assert_equal_predictions(sklearn_pipeline, trained_lale_pipeline)
github IBM / lale / test / test_optimizers.py View on Github external
def test_with_concat_features2(self):
        import warnings
        warnings.filterwarnings("ignore")

        from sklearn.datasets import load_iris
        from lale.lib.lale import Hyperopt
        from sklearn.metrics import accuracy_score
        data = load_iris()
        X, y = data.data, data.target
        pca = PCA(n_components=3)
        nys = Nystroem(n_components=10)
        concat = ConcatFeatures()
        lr = LogisticRegression(random_state=42, C=0.1)
        from lale.operators import make_pipeline
        pipeline = make_pipeline(((((SimpleImputer() | NoOp()) >> pca) & nys) >> concat >> lr) | KNeighborsClassifier())
        clf = Hyperopt(estimator=pipeline, max_evals=1, handle_cv_failure=True)
        trained = clf.fit(X, y)
        predictions = trained.predict(X)
        print(accuracy_score(y, predictions))
        warnings.resetwarnings()
github IBM / lale / test / test_core_pipeline.py View on Github external
def test_export_to_sklearn_pipeline_with_noop_1(self):
        from lale.lib.sklearn import PCA, KNeighborsClassifier
        from lale.lib.lale import NoOp
        from sklearn.pipeline import make_pipeline
        lale_pipeline = NoOp() >> PCA(n_components=3) >>  KNeighborsClassifier()
        trained_lale_pipeline = lale_pipeline.fit(self.X_train, self.y_train)
        sklearn_pipeline = trained_lale_pipeline.export_to_sklearn_pipeline()
        self.assert_equal_predictions(sklearn_pipeline, trained_lale_pipeline)
github IBM / lale / test / test_core_operators.py View on Github external
def test_predict_proba(self):
        trainable = KNeighborsClassifier()
        iris = sklearn.datasets.load_iris()
        trained = trainable.fit(iris.data, iris.target)
        #with self.assertWarns(DeprecationWarning):
        predicted = trainable.predict_proba(iris.data)
        predicted = trained.predict_proba(iris.data)
github IBM / lale / test / test_core_pipeline.py View on Github external
def test_export_to_sklearn_pipeline_with_noop_3(self):
        from lale.lib.sklearn import PCA, KNeighborsClassifier
        from lale.lib.lale import NoOp
        from sklearn.pipeline import make_pipeline
        # This test is probably unnecessary, but doesn't harm at this point
        lale_pipeline =  PCA(n_components=3) >> KNeighborsClassifier() >> NoOp() 
        trained_lale_pipeline = lale_pipeline.fit(self.X_train, self.y_train)
        sklearn_pipeline = trained_lale_pipeline.export_to_sklearn_pipeline()
github IBM / lale / test / test_core_pipeline.py View on Github external
def test_export_to_sklearn_pipeline1(self):
        from lale.lib.sklearn import PCA
        from lale.lib.sklearn import KNeighborsClassifier
        from sklearn.feature_selection import SelectKBest
        from sklearn.pipeline import make_pipeline
        lale_pipeline = SelectKBest(k=3) >>  KNeighborsClassifier()
        trained_lale_pipeline = lale_pipeline.fit(self.X_train, self.y_train)
        sklearn_pipeline = trained_lale_pipeline.export_to_sklearn_pipeline()
        for i, pipeline_step in enumerate(sklearn_pipeline.named_steps):
            sklearn_step_params = type(sklearn_pipeline.named_steps[pipeline_step])
            lale_sklearn_params = type(trained_lale_pipeline.steps()[i]._impl._wrapped_model) if hasattr(trained_lale_pipeline.steps()[i]._impl, '_wrapped_model') else type(trained_lale_pipeline.steps()[i]._impl)                
            self.assertEqual(sklearn_step_params, lale_sklearn_params)
        self.assert_equal_predictions(sklearn_pipeline, trained_lale_pipeline)
github IBM / lale / test / test_optimizers.py View on Github external
def test_planned_pipeline_2(self) :
        plan = (
            ( MinMaxScaler() & NoOp() ) >> ConcatFeatures() >>
            ( NoOp() & MinMaxScaler() ) >> ConcatFeatures() >>
            ( LogisticRegression | KNeighborsClassifier )
        )
        run_hyperopt_on_planned_pipeline(plan)
github IBM / lale / test / test_core_operators.py View on Github external
def test_with_gridsearch(self):
        from lale.lib.sklearn import VotingClassifier
        from lale.lib.lale import GridSearchCV
        from sklearn.metrics import accuracy_score, make_scorer
        clf = VotingClassifier(estimators=[('knn', KNeighborsClassifier()), ('rc', RidgeClassifier())], voting='hard')
        trained = clf.auto_configure(self.X_train, self.y_train, GridSearchCV, lale_num_samples=1, lale_num_grids=1, cv=2, scoring=make_scorer(accuracy_score))