How to use the lale.docstrings.set_docstrings function in lale

To help you get started, we’ve selected a few lale examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github IBM / lale / lale / lib / autogen / label_propagation.py View on Github external
'description': 'Combined schema for expected data and hyperparameters.',
    'documentation_url': 'https://scikit-learn.org/0.20/modules/generated/sklearn.semi_supervised.LabelPropagation#sklearn-semi_supervised-labelpropagation',
    'type': 'object',
    'tags': {
        'pre': [],
        'op': ['estimator'],
        'post': []},
    'properties': {
        'hyperparams': _hyperparams_schema,
        'input_fit': _input_fit_schema,
        'input_predict': _input_predict_schema,
        'output_predict': _output_predict_schema,
        'input_predict_proba': _input_predict_proba_schema,
        'output_predict_proba': _output_predict_proba_schema},
}
lale.docstrings.set_docstrings(LabelPropagationImpl, _combined_schemas)
LabelPropagation = lale.operators.make_operator(LabelPropagationImpl, _combined_schemas)
github IBM / lale / lale / lib / imblearn / svm_smote.py View on Github external
'op': ['transformer', 'estimator', 'resampler'],#transformer and estimator both as a higher-order operator
    'post': []},
  'properties': {
    'hyperparams': _hyperparams_schema,
    'input_fit': _input_fit_schema,
    'input_transform': _input_transform_schema,
    'output_transform': _output_transform_schema,
    'input_predict': _input_predict_schema,
    'output_predict': _output_predict_schema,
    'input_predict_proba': _input_predict_proba_schema,
    'output_predict_proba': _output_predict_proba_schema,
    'input_decision_function': _input_decision_function_schema,
    'output_decision_function': _output_decision_function_schema
}}

lale.docstrings.set_docstrings(SVMSMOTEImpl, _combined_schemas)

SVMSMOTE = lale.operators.make_operator(SVMSMOTEImpl, _combined_schemas)
github IBM / lale / lale / lib / autogen / pca.py View on Github external
_combined_schemas = {
    '$schema': 'http://json-schema.org/draft-04/schema#',
    'description': 'Combined schema for expected data and hyperparameters.',
    'documentation_url': 'https://scikit-learn.org/0.20/modules/generated/sklearn.decomposition.PCA#sklearn-decomposition-pca',
    'type': 'object',
    'tags': {
        'pre': [],
        'op': ['transformer'],
        'post': []},
    'properties': {
        'hyperparams': _hyperparams_schema,
        'input_fit': _input_fit_schema,
        'input_transform': _input_transform_schema,
        'output_transform': _output_transform_schema},
}
lale.docstrings.set_docstrings(PCAImpl, _combined_schemas)
PCA = lale.operators.make_operator(PCAImpl, _combined_schemas)
github IBM / lale / lale / lib / autogen / ada_boost_regressor.py View on Github external
_combined_schemas = {
    '$schema': 'http://json-schema.org/draft-04/schema#',
    'description': 'Combined schema for expected data and hyperparameters.',
    'documentation_url': 'https://scikit-learn.org/0.20/modules/generated/sklearn.ensemble.AdaBoostRegressor#sklearn-ensemble-adaboostregressor',
    'type': 'object',
    'tags': {
        'pre': [],
        'op': ['estimator', 'regressor'],
        'post': []},
    'properties': {
        'hyperparams': _hyperparams_schema,
        'input_fit': _input_fit_schema,
        'input_predict': _input_predict_schema,
        'output_predict': _output_predict_schema},
}
lale.docstrings.set_docstrings(AdaBoostRegressorImpl, _combined_schemas)
AdaBoostRegressor = lale.operators.make_operator(AdaBoostRegressorImpl, _combined_schemas)
github IBM / lale / lale / lib / sklearn / random_forest_classifier.py View on Github external
""",
    'documentation_url': 'https://lale.readthedocs.io/en/latest/modules/lale.lib.sklearn.random_forest_classifier.html',
    'type': 'object',
    'tags': {
        'pre': [],
        'op': ['estimator', 'classifier'],
        'post': []},
    'properties': {
        'hyperparams': _hyperparams_schema,
        'input_fit': _input_fit_schema,
        'input_predict': _input_predict_schema,
        'output_predict': _output_predict_schema,
        'input_predict_proba': _input_predict_proba_schema,
        'output_predict_proba': _output_predict_proba_schema}}

lale.docstrings.set_docstrings(RandomForestClassifierImpl, _combined_schemas)

RandomForestClassifier = lale.operators.make_operator(RandomForestClassifierImpl, _combined_schemas)
github IBM / lale / lale / lib / autoai_libs / num_imputer.py View on Github external
.. _`autoai_libs`: https://pypi.org/project/autoai-libs
.. _Imputer: https://scikit-learn.org/0.20/modules/generated/sklearn.preprocessing.Imputer.html#sklearn-preprocessing-imputer""",
    'documentation_url': 'https://lale.readthedocs.io/en/latest/modules/lale.lib.autoai_libs.num_imputer.html',
    'type': 'object',
    'tags': {
        'pre': [],
        'op': ['transformer'],
        'post': []},
    'properties': {
        'hyperparams': _hyperparams_schema,
        'input_fit': _input_fit_schema,
        'input_transform': _input_transform_schema,
        'output_transform': _output_transform_schema}}

lale.docstrings.set_docstrings(NumImputerImpl, _combined_schemas)

NumImputer = lale.operators.make_operator(NumImputerImpl, _combined_schemas)
github IBM / lale / lale / lib / xgboost / xgb_regressor.py View on Github external
'$schema': 'http://json-schema.org/draft-04/schema#',
    'description': 'Combined schema for expected data and hyperparameters.',
    'documentation_url': 'https://xgboost.readthedocs.io/en/latest/python/python_api.html#module-xgboost.sklearn',
    'tags': {
        'pre': [],
        'op': ['estimator', 'regressor'],
        'post': []},
    'properties': {
        'hyperparams': _hyperparams_schema,
        'input_fit': _input_fit_schema,
        'input_predict': _input_predict_schema,
        'output_predict': _output_predict_schema,
        'input_predict_proba': _input_predict_schema,
        'output_predict_proba': _output_predict_schema}}

lale.docstrings.set_docstrings(XGBRegressorImpl, _combined_schemas)

XGBRegressor = lale.operators.make_operator(XGBRegressorImpl, _combined_schemas)
github IBM / lale / lale / lib / sklearn / nmf.py View on Github external
.. _`Non-negative matrix factorization`: https://scikit-learn.org/0.20/modules/generated/sklearn.decomposition.NMF.html#sklearn-decomposition-nmf
""",
    'documentation_url': 'https://lale.readthedocs.io/en/latest/modules/lale.lib.sklearn.nmf.html',
    'type': 'object',
    'tags': {
        'pre': [],
        'op': ['transformer'],
        'post': []},
    'properties': {
        'hyperparams': _hyperparams_schema,
        'input_fit': _input_fit_schema,
        'input_transform': _input_transform_schema,
        'output_transform': _output_transform_schema}}

lale.docstrings.set_docstrings(NMFImpl, _combined_schemas)

NMF = lale.operators.make_operator(NMFImpl, _combined_schemas)
github IBM / lale / lale / lib / lale / smac.py View on Github external
_combined_schemas = {
    'documentation_url': 'https://lale.readthedocs.io/en/latest/modules/lale.lib.lale.hyperopt_cv.html',
    'description': 'SMAC, the optimizer used inside auto-weka and auto-sklearn.',
    'type': 'object',
    'tags': {
        'pre': [],
        'op': ['estimator'],
        'post': []},
    'properties': {
        'hyperparams': _hyperparams_schema,
        'input_fit': _input_fit_schema,
        'input_predict': _input_predict_schema,
        'output_predict': _output_predict_schema}}

lale.docstrings.set_docstrings(SMACImpl, _combined_schemas)

SMAC = lale.operators.make_operator(SMACImpl, _combined_schemas)
github IBM / lale / lale / lib / autogen / ridge_classifier_cv.py View on Github external
'description': 'Combined schema for expected data and hyperparameters.',
    'documentation_url': 'https://scikit-learn.org/0.20/modules/generated/sklearn.linear_model.RidgeClassifierCV#sklearn-linear_model-ridgeclassifiercv',
    'type': 'object',
    'tags': {
        'pre': [],
        'op': ['estimator'],
        'post': []},
    'properties': {
        'hyperparams': _hyperparams_schema,
        'input_fit': _input_fit_schema,
        'input_predict': _input_predict_schema,
        'output_predict': _output_predict_schema,
        'input_decision_function': _input_decision_function_schema,
        'output_decision_function': _output_decision_function_schema},
}
lale.docstrings.set_docstrings(RidgeClassifierCVImpl, _combined_schemas)
RidgeClassifierCV = lale.operators.make_operator(RidgeClassifierCVImpl, _combined_schemas)