Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
'description': 'Combined schema for expected data and hyperparameters.',
'documentation_url': 'https://scikit-learn.org/0.20/modules/generated/sklearn.semi_supervised.LabelPropagation#sklearn-semi_supervised-labelpropagation',
'type': 'object',
'tags': {
'pre': [],
'op': ['estimator'],
'post': []},
'properties': {
'hyperparams': _hyperparams_schema,
'input_fit': _input_fit_schema,
'input_predict': _input_predict_schema,
'output_predict': _output_predict_schema,
'input_predict_proba': _input_predict_proba_schema,
'output_predict_proba': _output_predict_proba_schema},
}
lale.docstrings.set_docstrings(LabelPropagationImpl, _combined_schemas)
LabelPropagation = lale.operators.make_operator(LabelPropagationImpl, _combined_schemas)
'op': ['transformer', 'estimator', 'resampler'],#transformer and estimator both as a higher-order operator
'post': []},
'properties': {
'hyperparams': _hyperparams_schema,
'input_fit': _input_fit_schema,
'input_transform': _input_transform_schema,
'output_transform': _output_transform_schema,
'input_predict': _input_predict_schema,
'output_predict': _output_predict_schema,
'input_predict_proba': _input_predict_proba_schema,
'output_predict_proba': _output_predict_proba_schema,
'input_decision_function': _input_decision_function_schema,
'output_decision_function': _output_decision_function_schema
}}
lale.docstrings.set_docstrings(SVMSMOTEImpl, _combined_schemas)
SVMSMOTE = lale.operators.make_operator(SVMSMOTEImpl, _combined_schemas)
_combined_schemas = {
'$schema': 'http://json-schema.org/draft-04/schema#',
'description': 'Combined schema for expected data and hyperparameters.',
'documentation_url': 'https://scikit-learn.org/0.20/modules/generated/sklearn.decomposition.PCA#sklearn-decomposition-pca',
'type': 'object',
'tags': {
'pre': [],
'op': ['transformer'],
'post': []},
'properties': {
'hyperparams': _hyperparams_schema,
'input_fit': _input_fit_schema,
'input_transform': _input_transform_schema,
'output_transform': _output_transform_schema},
}
lale.docstrings.set_docstrings(PCAImpl, _combined_schemas)
PCA = lale.operators.make_operator(PCAImpl, _combined_schemas)
_combined_schemas = {
'$schema': 'http://json-schema.org/draft-04/schema#',
'description': 'Combined schema for expected data and hyperparameters.',
'documentation_url': 'https://scikit-learn.org/0.20/modules/generated/sklearn.ensemble.AdaBoostRegressor#sklearn-ensemble-adaboostregressor',
'type': 'object',
'tags': {
'pre': [],
'op': ['estimator', 'regressor'],
'post': []},
'properties': {
'hyperparams': _hyperparams_schema,
'input_fit': _input_fit_schema,
'input_predict': _input_predict_schema,
'output_predict': _output_predict_schema},
}
lale.docstrings.set_docstrings(AdaBoostRegressorImpl, _combined_schemas)
AdaBoostRegressor = lale.operators.make_operator(AdaBoostRegressorImpl, _combined_schemas)
""",
'documentation_url': 'https://lale.readthedocs.io/en/latest/modules/lale.lib.sklearn.random_forest_classifier.html',
'type': 'object',
'tags': {
'pre': [],
'op': ['estimator', 'classifier'],
'post': []},
'properties': {
'hyperparams': _hyperparams_schema,
'input_fit': _input_fit_schema,
'input_predict': _input_predict_schema,
'output_predict': _output_predict_schema,
'input_predict_proba': _input_predict_proba_schema,
'output_predict_proba': _output_predict_proba_schema}}
lale.docstrings.set_docstrings(RandomForestClassifierImpl, _combined_schemas)
RandomForestClassifier = lale.operators.make_operator(RandomForestClassifierImpl, _combined_schemas)
.. _`autoai_libs`: https://pypi.org/project/autoai-libs
.. _Imputer: https://scikit-learn.org/0.20/modules/generated/sklearn.preprocessing.Imputer.html#sklearn-preprocessing-imputer""",
'documentation_url': 'https://lale.readthedocs.io/en/latest/modules/lale.lib.autoai_libs.num_imputer.html',
'type': 'object',
'tags': {
'pre': [],
'op': ['transformer'],
'post': []},
'properties': {
'hyperparams': _hyperparams_schema,
'input_fit': _input_fit_schema,
'input_transform': _input_transform_schema,
'output_transform': _output_transform_schema}}
lale.docstrings.set_docstrings(NumImputerImpl, _combined_schemas)
NumImputer = lale.operators.make_operator(NumImputerImpl, _combined_schemas)
'$schema': 'http://json-schema.org/draft-04/schema#',
'description': 'Combined schema for expected data and hyperparameters.',
'documentation_url': 'https://xgboost.readthedocs.io/en/latest/python/python_api.html#module-xgboost.sklearn',
'tags': {
'pre': [],
'op': ['estimator', 'regressor'],
'post': []},
'properties': {
'hyperparams': _hyperparams_schema,
'input_fit': _input_fit_schema,
'input_predict': _input_predict_schema,
'output_predict': _output_predict_schema,
'input_predict_proba': _input_predict_schema,
'output_predict_proba': _output_predict_schema}}
lale.docstrings.set_docstrings(XGBRegressorImpl, _combined_schemas)
XGBRegressor = lale.operators.make_operator(XGBRegressorImpl, _combined_schemas)
.. _`Non-negative matrix factorization`: https://scikit-learn.org/0.20/modules/generated/sklearn.decomposition.NMF.html#sklearn-decomposition-nmf
""",
'documentation_url': 'https://lale.readthedocs.io/en/latest/modules/lale.lib.sklearn.nmf.html',
'type': 'object',
'tags': {
'pre': [],
'op': ['transformer'],
'post': []},
'properties': {
'hyperparams': _hyperparams_schema,
'input_fit': _input_fit_schema,
'input_transform': _input_transform_schema,
'output_transform': _output_transform_schema}}
lale.docstrings.set_docstrings(NMFImpl, _combined_schemas)
NMF = lale.operators.make_operator(NMFImpl, _combined_schemas)
_combined_schemas = {
'documentation_url': 'https://lale.readthedocs.io/en/latest/modules/lale.lib.lale.hyperopt_cv.html',
'description': 'SMAC, the optimizer used inside auto-weka and auto-sklearn.',
'type': 'object',
'tags': {
'pre': [],
'op': ['estimator'],
'post': []},
'properties': {
'hyperparams': _hyperparams_schema,
'input_fit': _input_fit_schema,
'input_predict': _input_predict_schema,
'output_predict': _output_predict_schema}}
lale.docstrings.set_docstrings(SMACImpl, _combined_schemas)
SMAC = lale.operators.make_operator(SMACImpl, _combined_schemas)
'description': 'Combined schema for expected data and hyperparameters.',
'documentation_url': 'https://scikit-learn.org/0.20/modules/generated/sklearn.linear_model.RidgeClassifierCV#sklearn-linear_model-ridgeclassifiercv',
'type': 'object',
'tags': {
'pre': [],
'op': ['estimator'],
'post': []},
'properties': {
'hyperparams': _hyperparams_schema,
'input_fit': _input_fit_schema,
'input_predict': _input_predict_schema,
'output_predict': _output_predict_schema,
'input_decision_function': _input_decision_function_schema,
'output_decision_function': _output_decision_function_schema},
}
lale.docstrings.set_docstrings(RidgeClassifierCVImpl, _combined_schemas)
RidgeClassifierCV = lale.operators.make_operator(RidgeClassifierCVImpl, _combined_schemas)