Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
'documentation_url': 'https://lale.readthedocs.io/en/latest/modules/lale.lib.lale.hyperopt_cv.html',
'description': 'SMAC, the optimizer used inside auto-weka and auto-sklearn.',
'type': 'object',
'tags': {
'pre': [],
'op': ['estimator'],
'post': []},
'properties': {
'hyperparams': _hyperparams_schema,
'input_fit': _input_fit_schema,
'input_predict': _input_predict_schema,
'output_predict': _output_predict_schema}}
lale.docstrings.set_docstrings(SMACImpl, _combined_schemas)
SMAC = lale.operators.make_operator(SMACImpl, _combined_schemas)
'$schema': 'http://json-schema.org/draft-04/schema#',
'description': 'Passes the data through unchanged.',
'documentation_url': 'https://lale.readthedocs.io/en/latest/modules/lale.lib.lale.no_op.html',
'type': 'object',
'tags': {
'pre': [],
'op': ['transformer'],
'post': []},
'properties': {
'hyperparams': _hyperparams_schema,
'input_transform': _input_transform_schema,
'output_transform': _output_transform_schema}}
lale.docstrings.set_docstrings(NoOpImpl, _combined_schemas)
NoOp = lale.operators.make_operator(NoOpImpl, _combined_schemas)
.. _Imputer: https://scikit-learn.org/0.20/modules/generated/sklearn.preprocessing.Imputer.html#sklearn-preprocessing-imputer""",
'documentation_url': 'https://lale.readthedocs.io/en/latest/modules/lale.lib.autoai_libs.num_imputer.html',
'type': 'object',
'tags': {
'pre': [],
'op': ['transformer'],
'post': []},
'properties': {
'hyperparams': _hyperparams_schema,
'input_fit': _input_fit_schema,
'input_transform': _input_transform_schema,
'output_transform': _output_transform_schema}}
lale.docstrings.set_docstrings(NumImputerImpl, _combined_schemas)
NumImputer = lale.operators.make_operator(NumImputerImpl, _combined_schemas)
""",
'documentation_url': 'https://lale.readthedocs.io/en/latest/modules/lale.lib.sklearn.random_forest_regressor.html',
'type': 'object',
'tags': {
'pre': [],
'op': ['estimator', 'regressor'],
'post': []},
'properties': {
'hyperparams': _hyperparams_schema,
'input_fit': _input_fit_schema,
'input_predict': _input_predict_schema,
'output_predict': _output_predict_schema}}
lale.docstrings.set_docstrings(RandomForestRegressorImpl, _combined_schemas)
RandomForestRegressor = lale.operators.make_operator(RandomForestRegressorImpl, _combined_schemas)
'$schema': 'http://json-schema.org/draft-04/schema#',
'description': 'Combined schema for expected data and hyperparameters.',
'documentation_url': 'https://scikit-learn.org/0.20/modules/generated/sklearn.preprocessing.RobustScaler#sklearn-preprocessing-robustscaler',
'type': 'object',
'tags': {
'pre': [],
'op': ['transformer'],
'post': []},
'properties': {
'hyperparams': _hyperparams_schema,
'input_fit': _input_fit_schema,
'input_transform': _input_transform_schema,
'output_transform': _output_transform_schema},
}
lale.docstrings.set_docstrings(RobustScalerImpl, _combined_schemas)
RobustScaler = lale.operators.make_operator(RobustScalerImpl, _combined_schemas)
def _get_state(op: 'lale.operators.Operator') -> str:
if isinstance(op, lale.operators.TrainedOperator):
return 'trained'
if isinstance(op, lale.operators.TrainableOperator):
return 'trainable'
if isinstance(op, lale.operators.PlannedOperator) or isinstance(op, lale.operators.OperatorChoice):
return 'planned'
if isinstance(op, lale.operators.Operator):
return 'metamodel'
raise TypeError(f'Expected lale.operators.Operator, got {type(op)}.')
'$schema': 'http://json-schema.org/draft-04/schema#',
'description': 'Combined schema for expected data and hyperparameters.',
'documentation_url': 'https://scikit-learn.org/0.20/modules/generated/sklearn.kernel_approximation.RBFSampler#sklearn-kernel_approximation-rbfsampler',
'type': 'object',
'tags': {
'pre': [],
'op': ['transformer'],
'post': []},
'properties': {
'hyperparams': _hyperparams_schema,
'input_fit': _input_fit_schema,
'input_transform': _input_transform_schema,
'output_transform': _output_transform_schema},
}
lale.docstrings.set_docstrings(RBFSamplerImpl, _combined_schemas)
RBFSampler = lale.operators.make_operator(RBFSamplerImpl, _combined_schemas)
'$schema': 'http://json-schema.org/draft-04/schema#',
'description': 'Combined schema for expected data and hyperparameters.',
'documentation_url': 'https://scikit-learn.org/0.20/modules/generated/sklearn.linear_model.Ridge#sklearn-linear_model-ridge',
'type': 'object',
'tags': {
'pre': [],
'op': ['estimator'],
'post': []},
'properties': {
'hyperparams': _hyperparams_schema,
'input_fit': _input_fit_schema,
'input_predict': _input_predict_schema,
'output_predict': _output_predict_schema},
}
lale.docstrings.set_docstrings(RidgeImpl, _combined_schemas)
Ridge = lale.operators.make_operator(RidgeImpl, _combined_schemas)
'properties': {
'hyperparams': _hyperparams_schema,
'input_fit': _input_fit_schema,
'input_transform': _input_transform_schema,
'output_transform': _output_transform_schema,
'input_predict': _input_predict_schema,
'output_predict': _output_predict_schema,
'input_predict_proba': _input_predict_proba_schema,
'output_predict_proba': _output_predict_proba_schema,
'input_decision_function': _input_decision_function_schema,
'output_decision_function': _output_decision_function_schema
}}
lale.docstrings.set_docstrings(RepeatedEditedNearestNeighboursImpl, _combined_schemas)
RepeatedEditedNearestNeighbours = lale.operators.make_operator(RepeatedEditedNearestNeighboursImpl, _combined_schemas)
'$schema': 'http://json-schema.org/draft-04/schema#',
'description': 'Combined schema for expected data and hyperparameters.',
'documentation_url': 'https://scikit-learn.org/0.20/modules/generated/sklearn.decomposition.SparsePCA#sklearn-decomposition-sparsepca',
'type': 'object',
'tags': {
'pre': [],
'op': ['transformer'],
'post': []},
'properties': {
'hyperparams': _hyperparams_schema,
'input_fit': _input_fit_schema,
'input_transform': _input_transform_schema,
'output_transform': _output_transform_schema},
}
lale.docstrings.set_docstrings(SparsePCAImpl, _combined_schemas)
SparsePCA = lale.operators.make_operator(SparsePCAImpl, _combined_schemas)