How to use the lale.lib.sklearn.Nystroem function in lale

To help you get started, we’ve selected a few lale examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github IBM / lale / test / test_core_pipeline.py View on Github external
def test_two_estimators_predict(self):
        pipeline = StandardScaler()  >> ( PCA() & Nystroem() & LogisticRegression() )>>ConcatFeatures() >> NoOp() >> LogisticRegression()
        trained = pipeline.fit(self.X_train, self.y_train)
        trained.predict(self.X_test)
github IBM / lale / test / test_core_operators.py View on Github external
def test_concat_with_hyperopt2(self):
        from lale.operators import make_pipeline, make_union
        from lale.lib.lale import Hyperopt
        pca = PCA(n_components=3)
        nys = Nystroem(n_components=10)
        concat = ConcatFeatures()
        lr = LogisticRegression(random_state=42, C=0.1)

        trainable = make_pipeline(make_union(pca, nys), lr)
        clf = Hyperopt(estimator=trainable, max_evals=2)
        from sklearn.datasets import load_iris
        iris_data = load_iris()
        clf.fit(iris_data.data, iris_data.target)
        clf.predict(iris_data.data)
github IBM / lale / test / test_core_operators.py View on Github external
def test_make_choice_with_instance(self):
        from lale.operators import make_union, make_choice, make_pipeline
        from sklearn.datasets import load_iris
        iris = load_iris()
        X, y = iris.data, iris.target
        tfm = PCA() | Nystroem() | NoOp()
        with self.assertRaises(AttributeError):
            trained = tfm.fit(X, y)
        planned_pipeline1 = (OneHotEncoder | NoOp) >> tfm >> (LogisticRegression | KNeighborsClassifier)
        planned_pipeline2 = (OneHotEncoder | NoOp) >> (PCA | Nystroem) >> (LogisticRegression | KNeighborsClassifier)
        planned_pipeline3 = make_choice(OneHotEncoder, NoOp) >> make_choice(PCA, Nystroem) >> make_choice(LogisticRegression, KNeighborsClassifier)
github IBM / lale / test / test_optimizers.py View on Github external
def test_fit_predict(self):
        from sklearn.datasets import load_iris
        from lale.lib.lale import TopKVotingClassifier
        from lale.lib.sklearn import Nystroem
        from sklearn.metrics import accuracy_score

        ensemble = TopKVotingClassifier(estimator=(PCA() | Nystroem()) >> (LogisticRegression()|KNeighborsClassifier()), args_to_optimizer={'max_evals':3}, k=2)
        trained = ensemble.fit(self.X_train, self.y_train)
        trained.predict(self.X_test)
github IBM / lale / test / test_core_pipeline.py View on Github external
def test_two_estimators_predict_proba(self):
        pipeline = StandardScaler()  >> ( PCA() & Nystroem() & LogisticRegression() )>>ConcatFeatures() >> NoOp() >> LogisticRegression()
        trained = pipeline.fit(self.X_train, self.y_train)
        trained.predict_proba(self.X_test)
github IBM / lale / test / test_optimizers.py View on Github external
def dont_test_smac_choice(self):

        import numpy as np
        from sklearn import svm, datasets
        from sklearn.model_selection import cross_val_score

        # Import ConfigSpace and different types of parameters
        from smac.configspace import ConfigurationSpace

        # Import SMAC-utilities
        from smac.tae.execute_func import ExecuteTAFuncDict
        from smac.scenario.scenario import Scenario
        from smac.facade.smac_facade import SMAC as orig_SMAC


        tfm = PCA() | Nystroem() | NoOp()
        planned_pipeline1 = (OneHotEncoder(handle_unknown = 'ignore',  sparse = False) | NoOp()) >> tfm >> (LogisticRegression() | KNeighborsClassifier())

        cs:ConfigurationSpace = get_smac_space(planned_pipeline1, lale_num_grids=1)

        # Scenario object
        scenario = Scenario({"run_obj": "quality",   # we optimize quality (alternatively runtime)
                            "runcount-limit": 1,  # maximum function evaluations
                            "cs": cs,               # configuration space
                            "deterministic": "true"
                            })

        # Optimize, using a SMAC-object
        tae = iris_fmin_tae(planned_pipeline1, num_folds=2)
        print("Optimizing! Depending on your machine, this might take a few minutes.")
        smac = orig_SMAC(scenario=scenario, rng=np.random.RandomState(42),
                tae_runner=tae)
github IBM / lale / test / test_core_pipeline.py View on Github external
def test_remove_last4(self):
        pipeline = StandardScaler()  >> ( PCA() & Nystroem() & PassiveAggressiveClassifier() )>>ConcatFeatures() >> NoOp() >> PassiveAggressiveClassifier()
        new_pipeline = pipeline.remove_last(inplace=True)
        self.assertEqual(len(new_pipeline._steps), 6)
        self.assertEqual(len(pipeline._steps), 6)
github IBM / lale / test / test_core_pipeline.py View on Github external
def test_remove_last2(self):
        pipeline = StandardScaler()  >> ( PCA() & Nystroem() & PassiveAggressiveClassifier() )>>ConcatFeatures() >> NoOp() >> (PassiveAggressiveClassifier() & LogisticRegression())
        with self.assertRaises(ValueError):
            pipeline.remove_last()