How to use the lale.lib.lale.ConcatFeatures function in lale

To help you get started, we’ve selected a few lale examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github IBM / lale / test / test_core_pipeline.py View on Github external
def test_two_estimators_predict1(self):
        pipeline = StandardScaler()  >> ( PCA() & Nystroem() & PassiveAggressiveClassifier() )>>ConcatFeatures() >> NoOp() >> PassiveAggressiveClassifier()
        trained = pipeline.fit(self.X_train, self.y_train)
        trained.predict(self.X_test)
    def test_two_estimators_predict_proba(self):
github IBM / lale / test / test_core_pipeline.py View on Github external
def test_remove_last3(self):
        pipeline = StandardScaler()  >> ( PCA() & Nystroem() & PassiveAggressiveClassifier() )>>ConcatFeatures() >> NoOp() >> PassiveAggressiveClassifier()
        pipeline.remove_last().freeze_trainable()
github IBM / lale / test / test_type_checking.py View on Github external
def test_transform_schema_Concat_irisArr(self):
        from lale.datasets.data_schemas import to_schema
        data_X, data_y = self._irisArr['X'], self._irisArr['y']
        s_in_X, s_in_y = to_schema(data_X), to_schema(data_y)
        def check(s_actual, n_expected, s_expected):
            assert s_actual['items']['minItems'] == n_expected, str(s_actual)
            assert s_actual['items']['maxItems'] == n_expected, str(s_actual)
            assert s_actual['items']['items'] == s_expected, str(s_actual)
        s_out_X = ConcatFeatures.transform_schema({'items': [s_in_X]})
        check(s_out_X, 4, {'type': 'number'})
        s_out_y = ConcatFeatures.transform_schema({'items': [s_in_y]})
        check(s_out_y, 1, {'type': 'integer'})
        s_out_XX = ConcatFeatures.transform_schema({'items': [s_in_X, s_in_X]})
        check(s_out_XX, 8, {'type': 'number'})
        s_out_yy = ConcatFeatures.transform_schema({'items': [s_in_y, s_in_y]})
        check(s_out_yy, 2, {'type': 'integer'})
        s_out_Xy = ConcatFeatures.transform_schema({'items': [s_in_X, s_in_y]})
        check(s_out_Xy, 5, {'type': 'number'})
        s_out_XXX = ConcatFeatures.transform_schema({
            'items': [s_in_X, s_in_X, s_in_X]})
        check(s_out_XXX, 12, {'type': 'number'})
github IBM / lale / test / test_json_pretty_viz.py View on Github external
def test_import_as_2(self):
        from lale.lib.sklearn import MinMaxScaler as Scaler
        from lale.lib.lale import NoOp
        from lale.lib.sklearn import PCA
        from lale.lib.sklearn import Nystroem
        from lale.lib.lale import ConcatFeatures as Concat
        from lale.lib.sklearn import KNeighborsClassifier as KNN
        from lale.lib.sklearn import LogisticRegression as LR
        pca = PCA(copy=False)
        lr = LR(solver='saga', C=0.9)
        pipeline = (Scaler | NoOp) >> (pca & Nystroem) >> Concat >> (KNN | lr)
        expected = \
"""from lale.lib.sklearn import MinMaxScaler as Scaler
from lale.lib.lale import NoOp
from lale.lib.sklearn import PCA
from lale.lib.sklearn import Nystroem
from lale.lib.lale import ConcatFeatures as Concat
from lale.lib.sklearn import KNeighborsClassifier as KNN
from lale.lib.sklearn import LogisticRegression as LR
import lale
lale.wrap_imported_operators()

pca = PCA(copy=False)
lr = LR(solver='saga', C=0.9)
pipeline = (Scaler | NoOp) >> (pca & Nystroem) >> Concat >> (KNN | lr)"""
        self._roundtrip(expected, lale.pretty_print.to_string(pipeline))
github IBM / lale / test / test_optimizers.py View on Github external
def test_planned_pipeline_3(self) :
        plan = (
            ( MinMaxScaler() & NoOp() ) >> ConcatFeatures() >>
            ( StandardScaler & ( NoOp() | MinMaxScaler() ) ) >> ConcatFeatures() >>
            ( LogisticRegression | KNeighborsClassifier )
        )
        run_hyperopt_on_planned_pipeline(plan)
github IBM / lale / test / test_core_pipeline.py View on Github external
def test_remove_last5(self):
        pipeline = StandardScaler()  >> ( PCA() & Nystroem() & PassiveAggressiveClassifier() )>>ConcatFeatures() >> NoOp() >> PassiveAggressiveClassifier()
        pipeline.remove_last(inplace=True).freeze_trainable()
github IBM / lale / test / test_core_operators.py View on Github external
def test_get_param_ranges(self):
        for op in [ConcatFeatures, KNeighborsClassifier, LogisticRegression,
                   MLPClassifier, Nystroem, OneHotEncoder, PCA]:
            self.validate_get_param_ranges(op)
github IBM / lale / lale / lib / lale / hyperopt_regressor.py View on Github external
'post': []},
    'properties': {
        'hyperparams': _hyperparams_schema,
        'input_fit': _input_fit_schema,
        'input_predict': _input_predict_schema,
        'output': _output_predict_schema}}

HyperoptRegressor = lale.operators.make_operator(HyperoptRegressorImpl, _combined_schemas)

if __name__ == '__main__':
    from lale.lib.lale import ConcatFeatures
    from lale.lib.sklearn import Nystroem, PCA, RandomForestRegressor
    from sklearn.metrics import r2_score
    pca = PCA(n_components=3)
    nys = Nystroem(n_components=3)
    concat = ConcatFeatures()
    rf = RandomForestRegressor()

    trainable = (pca & nys) >> concat >> rf
    #trainable = nys >>rf
    import sklearn.datasets
    from lale.helpers import cross_val_score
    diabetes = sklearn.datasets.load_diabetes()
    X, y = sklearn.utils.shuffle(diabetes.data, diabetes.target, random_state=42)

    hp_n = HyperoptRegressor(estimator=trainable, max_evals=20)

    hp_n_trained = hp_n.fit(X, y)
    predictions = hp_n_trained.predict(X)
    mse = r2_score(y, [round(pred) for pred in predictions])
    print(mse)
github IBM / lale / lale / lib / lale / hyperopt.py View on Github external
'hyperparams': _hyperparams_schema,
        'input_fit': _input_fit_schema,
        'input_predict': _input_predict_schema,
        'output_predict': _output_predict_schema}}

lale.docstrings.set_docstrings(HyperoptImpl, _combined_schemas)

Hyperopt = lale.operators.make_operator(HyperoptImpl, _combined_schemas)

if __name__ == '__main__':
    from lale.lib.lale import ConcatFeatures
    from lale.lib.sklearn import Nystroem
    from lale.lib.sklearn import PCA
    pca = PCA(n_components=10)
    nys = Nystroem(n_components=10)
    concat = ConcatFeatures()
    lr = LogisticRegression(random_state=42, C=0.1)

    trainable = (pca & nys) >> concat >> lr

    import sklearn.datasets
    from lale.helpers import cross_val_score
    digits = sklearn.datasets.load_iris()
    X, y = sklearn.utils.shuffle(digits.data, digits.target, random_state=42)

    hp_n = Hyperopt(estimator=trainable, max_evals=2)

    hp_n_trained = hp_n.fit(X, y)
    predictions = hp_n_trained.predict(X)
    from sklearn.metrics import accuracy_score
    accuracy = accuracy_score(y, [round(pred) for pred in predictions])
    print(accuracy)