How to use the pyemma.util.pystallone function in pyEMMA

To help you get started, we’ve selected a few pyEMMA examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github markovmodel / PyEMMA / pyemma / coordinates / clustering / clustering.py View on Github external
def clustercenter(self, i):
        """
        returns the cluster centers
        """
        jclustercenters = self._jclustering.getClusterCenter(i)
        return stallone.stallone_array_to_ndarray(jclustercenters)
github markovmodel / PyEMMA / pyemma / coordinates / clustering / clustering.py View on Github external
def clustercenter(self, i):
        """
        returns the cluster centers
        """
        jclustercenters = self._jclustering.getClusterCenter(i)
        return stallone.stallone_array_to_ndarray(jclustercenters)
github markovmodel / PyEMMA / pyemma / coordinates / io / datawriter.py View on Github external
def add(self, x):
        import pyemma.util.pystallone as stallone
        self._jwriter.add(stallone.ndarray_to_stallone_array(x))
github markovmodel / PyEMMA / pyemma / coordinates / clustering / clustering.py View on Github external
def assign(self, X):
        r"""Assigns point X to a cluster and returns its index.

        Parameters
        ----------
        X : numpy ndarray
            coordinate set to be assigned
            
        """
        jX = stallone.ndarray_to_stallone_array(X)
        return self._jclustering.assign(jX)
github markovmodel / PyEMMA / pyemma / msm / estimation / dense / hidden_markov_model.py View on Github external
sdtrajs = []
        # make a Java List
        for dtraj in dtrajs:
            sdtrajs.append(stallone.ndarray_to_stallone_array(dtraj))
        jlist = jpype.java.util.Arrays.asList(sdtrajs)
        # prepare run parameters
        timeshift = max(lag/10, 1); # by default, use 10 shifts per lag, but at least 1
        if (maxiter is None):
            maxiter = 100 * nstate * nstate; # by default use 100 nstate^2
        # convergence when likelihood increases by no more than dlconv
        dectol = -conv;
        # do not set initial values for hidden transition matrix or output probabilities (will be obtained by PCCA+)
        TCinit = None;
        chiInit = None;
        # run estimation
        self.hmm = stallone.API.hmm.pmm(jlist, nstate, lag, timeshift, maxiter, dectol, TCinit, chiInit)
github markovmodel / PyEMMA / pyemma / coordinates / clustering / api.py View on Github external
# coding=utf-8
r"""
================================
Clustering Coordinates API
================================

"""

__docformat__ = "restructuredtext en"

from pyemma.util.pystallone import jarray
from pyemma.util import pystallone as stallone
from . import clustering

# shortcuts
intseqNew = stallone.API.intseqNew
intseq = stallone.API.intseq
dataNew = stallone.API.dataNew
data = stallone.API.data
clusterNew = stallone.API.clusterNew
cluster = stallone.API.cluster
#
Clustering = clustering.Clustering

__author__ = "Martin Scherer, Frank Noe"
__copyright__ = "Copyright 2014, Computational Molecular Biology Group, FU-Berlin"
__credits__ = ["Martin Scherer", "Frank Noe"]
__license__ = "FreeBSD"
__version__ = "2.0.0"
__maintainer__ = "Martin Scherer"
__email__="m.scherer AT fu-berlin DOT de"
github markovmodel / PyEMMA / pyemma / coordinates / io / datareader.py View on Github external
the corresponding data elements are selected. 
        For molecular data, instead of the full (N x 3) arrays, a (n x 3) subset
        will be returned.
        
        Parameters
        ----------
        select = None : list of integers
            atoms or dimension selection. 
        """
        # when a change is made:
        if (not np.array_equal(selection, self._selection)):
            self._selection = selection
            if (selection is None):
                self._java_reader.select(None)
            else:
                self._java_reader.select(stallone.jarray(selection))
github markovmodel / PyEMMA / pyemma / msm / estimation / dense / hidden_markov_model.py View on Github external
[0, 10, 20, ...]
            [2, 12, 22, ...]
            [4, 14, 24, ...]
            [6, 16, 26, ...]
            [8, 18, 28, ...]
            Basicly, when timeshift = 1, all data will be used, while for > 1 data will be subsampled. Setting
            timeshift greater than tau will have no effect, because at least the first subtrajectory will be 
            used.
        """
        # format input data
        if (type(dtrajs) is np.ndarray):
            dtrajs = [dtrajs]
        sdtrajs = []
        # make a Java List
        for dtraj in dtrajs:
            sdtrajs.append(stallone.ndarray_to_stallone_array(dtraj))
        jlist = jpype.java.util.Arrays.asList(sdtrajs)
        # prepare run parameters
        timeshift = max(lag/10, 1); # by default, use 10 shifts per lag, but at least 1
        if (maxiter is None):
            maxiter = 100 * nstate * nstate; # by default use 100 nstate^2
        # convergence when likelihood increases by no more than dlconv
        dectol = -conv;
        # do not set initial values for hidden transition matrix or output probabilities (will be obtained by PCCA+)
        TCinit = None;
        chiInit = None;
        # run estimation
        self.hmm = stallone.API.hmm.pmm(jlist, nstate, lag, timeshift, maxiter, dectol, TCinit, chiInit)
github markovmodel / PyEMMA / pyemma / coordinates / transform / linear_transform.py View on Github external
def eigenvectors(self):
        """
        Returns the eigenvector matrix of the covariance matrix
        with eigenvectors as column vectors
        """
        if (self._evec is None):
            self._evec = stallone.stallone_array_to_ndarray(self.jtransform().getEigenvectorMatrix())
        return self._evec
github markovmodel / msmtools / estimation / dense / hidden_markov_model.py View on Github external
def __init__(self, dtrajs, nstate, lag=1, conv=0.01, maxiter=None, timeshift=None,
                 TCinit=None, chiInit=None):
        lag = int(lag)
        # format input data
        if (type(dtrajs) is np.ndarray):
            dtrajs = [dtrajs]
        sdtrajs = []
        # make a Java List
        for dtraj in dtrajs:
            sdtrajs.append(stallone.ndarray_to_stallone_array(dtraj))
        jlist = stallone.java.util.Arrays.asList(sdtrajs)
        # prepare run parameters
        # by default, use 10 shifts per lag, but at least 1
        timeshift = max(lag / 10, 1)
        if (maxiter is None):
            maxiter = 100 * nstate * nstate  # by default use 100 nstate^2
        # convergence when likelihood increases by no more than dlconv
        dectol = -conv
        # convert initial values
        if TCinit is not None:
            TCinit = stallone.ndarray_to_stallone_array(TCinit)
        if chiInit is not None:
            chiInit = stallone.ndarray_to_stallone_array(chiInit)
        # run estimation
        try:
            self.hmm = stallone.API.hmm.pmm(jlist, nstate, lag, timeshift,