Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
# set up featurefinder and run
featurefinder = pyopenms.MRMFeatureFinderScoring()
# set the correct rt use values
scoring_params = pyopenms.MRMFeatureFinderScoring().getDefaults();
scoring_params.setValue("Scores:use_rt_score",'false', '')
featurefinder.setParameters(scoring_params);
featurefinder.pickExperiment(chromatograms, output, targeted, trafo, empty_swath)
# get the pairs
pairs=[]
simple_find_best_feature(output, pairs, targeted)
pairs_corrected = pyopenms.MRMRTNormalizer().rm_outliers( pairs, 0.95, 0.6)
pairs_corrected = [ list(p) for p in pairs_corrected]
# // store transformation, using a linear model as default
trafo_out = pyopenms.TransformationDescription()
trafo_out.setDataPoints(pairs_corrected);
model_params = pyopenms.Param()
model_params.setValue("symmetric_regression", 'false', '');
model_type = "linear";
trafo_out.fitModel(model_type, model_params);
return trafo_out
# set up featurefinder and run
featurefinder = pyopenms.MRMFeatureFinderScoring()
# set the correct rt use values
scoring_params = pyopenms.MRMFeatureFinderScoring().getDefaults();
scoring_params.setValue("Scores:use_rt_score",'false', '')
featurefinder.setParameters(scoring_params);
featurefinder.pickExperiment(chromatograms, output, targeted, trafo, empty_swath)
# get the pairs
pairs=[]
simple_find_best_feature(output, pairs, targeted)
pairs_corrected = pyopenms.MRMRTNormalizer().rm_outliers( pairs, 0.95, 0.6)
pairs_corrected = [ list(p) for p in pairs_corrected]
# // store transformation, using a linear model as default
trafo_out = pyopenms.TransformationDescription()
trafo_out.setDataPoints(pairs_corrected);
model_params = pyopenms.Param()
model_params.setValue("symmetric_regression", 'false', '');
model_type = "linear";
trafo_out.fitModel(model_type, model_params);
return trafo_out
map_ref = pms.FeatureMap()
f_fxml_tmp = pms.FeatureXMLFile()
options = f_fmxl.getOptions()
options.setLoadConvexHull(False)
options.setLoadSubordinates(False)
f_fxml_tmp.setOptions(options)
f_fxml_tmp.load(file_, map_ref)
algorithm.setReference(map_ref)
else:
map_ref = pms.MSExperiment()
pms.MzMLFile().load(file_, map_ref)
algorithm.setReference(map_ref)
plog.startProgress(0, len(in_files), "Align input maps")
for i, in_file in enumerate(in_files):
trafo = pms.TransformationDescription()
if align_features:
map_ = pms.FeatureMap()
f_fxml_tmp = pms.FeatureXMLFile()
f_fxml_tmp.setOptions(f_fmxl.getOptions())
f_fxml_tmp.load(in_file, map_)
if in_file == file_:
trafo.fitModel("identity")
else:
algorithm.align(map_, trafo)
if out_files:
pms.MapAlignmentTransformer.transformRetentionTimes(map_, trafo)
addDataProcessing(map_, params, pms.ProcessingAction.ALIGNMENT)
f_fxml_tmp.store(out_files[i], map_)
else:
map_ = pms.MSExperiment()
pms.MzMLFile().load(in_file, map_)
scorer = pyopenms.MRMFeatureFinderScoring()
scoring_params = scorer.getDefaults();
# Only report the top 5 features
scoring_params.setValue("stop_report_after_feature", 5, '')
scoring_params.setValue("rt_normalization_factor", rt_normalization_factor, '')
scorer.setParameters(scoring_params);
chromatograms = pyopenms.MSExperiment()
fh = pyopenms.FileHandler()
fh.loadExperiment(chromat_in, chromatograms)
targeted = pyopenms.TargetedExperiment();
tramlfile = pyopenms.TraMLFile();
tramlfile.load(traml_in, targeted);
trafoxml = pyopenms.TransformationXMLFile()
trafo = pyopenms.TransformationDescription()
if trafo_in is not None:
model_params = pyopenms.Param()
model_params.setValue("symmetric_regression", "false", "", [])
model_type = "linear"
trafoxml.load(trafo_in, trafo, True)
trafo.fitModel(model_type, model_params);
light_targeted = pyopenms.LightTargetedExperiment();
pyopenms.OpenSwathDataAccessHelper().convertTargetedExp(targeted, light_targeted)
output = algorithm(chromatograms, light_targeted, pp, scorer, trafo)
pyopenms.FeatureXMLFile().store(out, output);
def main(options):
# load TraML file
targeted = pyopenms.TargetedExperiment();
pyopenms.TraMLFile().load(options.traml_in, targeted);
# Create empty files as input and finally as output
empty_swath = pyopenms.MSExperiment()
trafo = pyopenms.TransformationDescription()
output = pyopenms.MSExperiment();
# load input
for infile in options.infiles:
exp = pyopenms.MSExperiment()
pyopenms.FileHandler().loadExperiment(infile, exp)
transition_exp_used = pyopenms.TargetedExperiment();
do_continue = True
if options.is_swath:
do_continue = pyopenms.OpenSwathHelper().checkSwathMapAndSelectTransitions(exp, targeted, transition_exp_used, options.min_upper_edge_dist)
else:
transition_exp_used = targeted
if do_continue:
def algorithm(chromatograms, targeted):
# Create empty files as input and finally as output
empty_swath = pyopenms.MSExperiment()
trafo = pyopenms.TransformationDescription()
output = pyopenms.FeatureMap();
# set up featurefinder and run
featurefinder = pyopenms.MRMFeatureFinderScoring()
# set the correct rt use values
scoring_params = pyopenms.MRMFeatureFinderScoring().getDefaults();
scoring_params.setValue("Scores:use_rt_score",'false', '')
featurefinder.setParameters(scoring_params);
featurefinder.pickExperiment(chromatograms, output, targeted, trafo, empty_swath)
# get the pairs
pairs=[]
simple_find_best_feature(output, pairs, targeted)
pairs_corrected = pyopenms.MRMRTNormalizer().rm_outliers( pairs, 0.95, 0.6)
pairs_corrected = [ list(p) for p in pairs_corrected]
def algorithm(chromatograms, targeted):
# Create empty files as input and finally as output
empty_swath = pyopenms.MSExperiment()
trafo = pyopenms.TransformationDescription()
output = pyopenms.FeatureMap();
# set up featurefinder and run
featurefinder = pyopenms.MRMFeatureFinderScoring()
# set the correct rt use values
scoring_params = pyopenms.MRMFeatureFinderScoring().getDefaults();
scoring_params.setValue("Scores:use_rt_score",'false', '')
featurefinder.setParameters(scoring_params);
featurefinder.pickExperiment(chromatograms, output, targeted, trafo, empty_swath)
# get the pairs
pairs=[]
simple_find_best_feature(output, pairs, targeted)
pairs_corrected = pyopenms.MRMRTNormalizer().rm_outliers( pairs, 0.95, 0.6)
pairs_corrected = [ list(p) for p in pairs_corrected]