Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def main(options):
# load chromatograms
chromatograms = pyopenms.MSExperiment()
fh = pyopenms.FileHandler()
fh.loadExperiment(options.infile, chromatograms)
# load TraML file
targeted = pyopenms.TargetedExperiment();
tramlfile = pyopenms.TraMLFile();
tramlfile.load(options.traml_in, targeted);
trafo_out = algorithm(chromatograms, targeted)
pyopenms.TransformationXMLFile().store(options.outfile, trafo_out);
product_tolerance = options.product_tolerance
out = options.outfile
chromat_in = options.infile
traml_in = options.traml_in
# precursor_tolerance = 0.05
# product_tolerance = 0.05
# out = "/tmp/out.mzML"
# chromat_in = "../source/TEST/TOPP/MRMMapping_input.chrom.mzML"
# traml_in = "../source/TEST/TOPP/MRMMapping_input.TraML"
ff = pyopenms.MRMFeatureFinderScoring()
chromatogram_map = pyopenms.MSExperiment()
fh = pyopenms.FileHandler()
fh.loadExperiment(chromat_in, chromatogram_map)
targeted = pyopenms.TargetedExperiment();
tramlfile = pyopenms.TraMLFile();
tramlfile.load(traml_in, targeted);
output = algorithm(chromatogram_map, targeted, precursor_tolerance, product_tolerance)
pyopenms.MzMLFile().store(out, output);
def main(options):
# load chromatograms
chromatograms = pyopenms.MSExperiment()
fh = pyopenms.FileHandler()
fh.loadExperiment(options.infile, chromatograms)
# load TraML file
targeted = pyopenms.TargetedExperiment();
tramlfile = pyopenms.TraMLFile();
tramlfile.load(options.traml_in, targeted);
trafo_out = algorithm(chromatograms, targeted)
pyopenms.TransformationXMLFile().store(options.outfile, trafo_out);
pp_params.setValue("PeakPickerMRM:gauss_width", 0.1, '')
pp_params.setValue("resample_boundary", 0.05, '')
pp_params.setValue("compute_peak_quality", "true", '')
pp.setParameters(pp_params)
scorer = pyopenms.MRMFeatureFinderScoring()
scoring_params = scorer.getDefaults();
# Only report the top 5 features
scoring_params.setValue("stop_report_after_feature", 5, '')
scoring_params.setValue("rt_normalization_factor", rt_normalization_factor, '')
scorer.setParameters(scoring_params);
chromatograms = pyopenms.MSExperiment()
fh = pyopenms.FileHandler()
fh.loadExperiment(chromat_in, chromatograms)
targeted = pyopenms.TargetedExperiment();
tramlfile = pyopenms.TraMLFile();
tramlfile.load(traml_in, targeted);
trafoxml = pyopenms.TransformationXMLFile()
trafo = pyopenms.TransformationDescription()
if trafo_in is not None:
model_params = pyopenms.Param()
model_params.setValue("symmetric_regression", "false", "", [])
model_type = "linear"
trafoxml.load(trafo_in, trafo, True)
trafo.fitModel(model_type, model_params);
light_targeted = pyopenms.LightTargetedExperiment();
pyopenms.OpenSwathDataAccessHelper().convertTargetedExp(targeted, light_targeted)
output = algorithm(chromatograms, light_targeted, pp, scorer, trafo)
# load TraML file
targeted = pyopenms.TargetedExperiment();
pyopenms.TraMLFile().load(options.traml_in, targeted);
# Create empty files as input and finally as output
empty_swath = pyopenms.MSExperiment()
trafo = pyopenms.TransformationDescription()
output = pyopenms.MSExperiment();
# load input
for infile in options.infiles:
exp = pyopenms.MSExperiment()
pyopenms.FileHandler().loadExperiment(infile, exp)
transition_exp_used = pyopenms.TargetedExperiment();
do_continue = True
if options.is_swath:
do_continue = pyopenms.OpenSwathHelper().checkSwathMapAndSelectTransitions(exp, targeted, transition_exp_used, options.min_upper_edge_dist)
else:
transition_exp_used = targeted
if do_continue:
# set up extractor and run
tmp_out = pyopenms.MSExperiment();
extractor = pyopenms.ChromatogramExtractor()
extractor.extractChromatograms(exp, tmp_out, targeted, options.extraction_window, options.ppm, trafo, options.rt_extraction_window, options.extraction_function)
# add all chromatograms to the output
for chrom in tmp_out.getChromatograms():
output.addChromatogram(chrom)
import pyopenms
except ImportError as e:
print("\nError!")
print("Could not import pyOpenMS while trying to load a TraML file - please make sure pyOpenMS is installed.")
print("pyOpenMS is available from https://pypi.python.org/pypi/pyopenms")
print()
raise e
assert len(aligned_pg_files) == 1, "There should only be one file in simple mode"
f = aligned_pg_files[0]
# Produce simple mapping between runs and files (assume each file is one run)
for i,raw in enumerate(rawdata_files):
mapping[str(i)] = [ raw ]
targexp = pyopenms.TargetedExperiment()
pyopenms.TraMLFile().load(f, targexp)
for peptide_precursor in targexp.getPeptides():
# Fill the protein mapping
protein_id = peptide_precursor.protein_refs
if len(protein_id) > 0:
protein_id = protein_id[0] # take the first one ...
tmp = protein_mapping.get(protein_id, [])
if peptide_precursor.sequence not in tmp:
tmp.append(peptide_precursor.sequence)
protein_mapping[protein_id] = tmp
# Fill the sequence mapping
tmp = sequences_mapping.get(peptide_precursor.sequence, [])