Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
for chrom in tmp_out.getChromatograms():
output.addChromatogram(chrom)
dp = pyopenms.DataProcessing()
pa = pyopenms.ProcessingAction().SMOOTHING
dp.setProcessingActions(set([pa]))
chromatograms = output.getChromatograms();
for chrom in chromatograms:
this_dp = chrom.getDataProcessing()
this_dp.append(dp)
chrom.setDataProcessing(this_dp)
output.setChromatograms(chromatograms);
pyopenms.MzMLFile().store(options.outfile, output);
plog.setLogType(pms.LogType.CMD)
if reference_file:
file_ = reference_file
elif reference_index > 0:
file_ = in_files[reference_index-1]
else:
sizes = []
if align_features:
fh = pms.FeatureXMLFile()
plog.startProgress(0, len(in_files), "Determine Reference map")
for i, in_f in enumerate(in_files):
sizes.append((fh.loadSize(in_f), in_f))
plog.setProgress(i)
else:
fh = pms.MzMLFile()
mse = pms.MSExperiment()
plog.startProgress(0, len(in_files), "Determine Reference map")
for i, in_f in enumerate(in_files):
fh.load(in_f, mse)
mse.updateRanges()
sizes.append((mse.getSize(), in_f))
plog.setProgress(i)
plog.endProgress()
__, file_ = max(sizes)
f_fmxl = pms.FeatureXMLFile()
if not out_files:
options = f_fmxl.getOptions()
options.setLoadConvexHull(False)
options.setLoadSubordinates(False)
f_fmxl.setOptions(options)
elif precusorsisolation == "Missing":
pass
else:
raise Exception("precusorsisolation needs to be {Missing,Pwiz,OpenSwath}")
prec.setMZ(400 + i *25 + 12.5);
spec.setPrecursors( [prec])
pk_list = [ [500.01+i, intensity*3000] , [500.15+i, intensity*3000/2.0], [500.25+i, intensity*3000/3.0] ]
peaks = numpy.array(pk_list, dtype=numpy.float32)
spec.set_peaks(peaks)
exp.addSpectrum(spec)
return exp
exp = getSwathExperiment(20,5, "OpenSwath")
pyopenms.MzMLFile().store("Swath_test_osw.mzML", exp)
exp = getSwathExperiment(20,5, "Pwiz")
pyopenms.MzMLFile().store("Swath_test_pwiz.mzML", exp)
exp = getSwathExperiment(20,5, "Missing")
pyopenms.MzMLFile().store("Swath_test_missing.mzML", exp)
options.setLoadConvexHull(False)
options.setLoadSubordinates(False)
f_fmxl.setOptions(options)
if align_features:
map_ref = pms.FeatureMap()
f_fxml_tmp = pms.FeatureXMLFile()
options = f_fmxl.getOptions()
options.setLoadConvexHull(False)
options.setLoadSubordinates(False)
f_fxml_tmp.setOptions(options)
f_fxml_tmp.load(file_, map_ref)
algorithm.setReference(map_ref)
else:
map_ref = pms.MSExperiment()
pms.MzMLFile().load(file_, map_ref)
algorithm.setReference(map_ref)
plog.startProgress(0, len(in_files), "Align input maps")
for i, in_file in enumerate(in_files):
trafo = pms.TransformationDescription()
if align_features:
map_ = pms.FeatureMap()
f_fxml_tmp = pms.FeatureXMLFile()
f_fxml_tmp.setOptions(f_fmxl.getOptions())
f_fxml_tmp.load(in_file, map_)
if in_file == file_:
trafo.fitModel("identity")
else:
algorithm.align(map_, trafo)
if out_files:
pms.MapAlignmentTransformer.transformRetentionTimes(map_, trafo)
# product_tolerance = 0.05
# out = "/tmp/out.mzML"
# chromat_in = "../source/TEST/TOPP/MRMMapping_input.chrom.mzML"
# traml_in = "../source/TEST/TOPP/MRMMapping_input.TraML"
ff = pyopenms.MRMFeatureFinderScoring()
chromatogram_map = pyopenms.MSExperiment()
fh = pyopenms.FileHandler()
fh.loadExperiment(chromat_in, chromatogram_map)
targeted = pyopenms.TargetedExperiment();
tramlfile = pyopenms.TraMLFile();
tramlfile.load(traml_in, targeted);
output = algorithm(chromatogram_map, targeted, precursor_tolerance, product_tolerance)
pyopenms.MzMLFile().store(out, output);
#try:
pr.setMZ( chrom["precursors"][0]["mz"] )
#except Exception: pass
c.setPrecursor(pr)
timea = numpy.array( chrom.time , dtype=numpy.float32)
inta = numpy.array( chrom.i , dtype=numpy.float32)
peaks = numpy.ndarray(shape=(len(timea), 2), dtype=numpy.float32)
peaks[:,0] = timea
peaks[:,1] = inta
c.set_peaks(peaks)
chroms_out.append(c)
except ImportError:
exp = pyopenms.MSExperiment()
pyopenms.MzMLFile().load(infile, exp)
exp2 = exp
exp2.clear(False)
chroms = exp2.getChromatograms()
for c in chroms:
if (inverse and not re.search(filter_criteria, key)) \
or (not inverse and re.search(filter_criteria, key)):
chroms_out.append(c)
# Sort chromatograms and store again
print("Retrieved", len(chroms_out), "chromatograms.")
chroms_out.sort(key=lambda x: x.getNativeID())
exp2.setChromatograms(chroms_out)
pyopenms.MzMLFile().store(outfile, exp2)
def run_featurefinder_centroided(input_path, params, seeds, out_path):
fh = pms.MzMLFile()
options = pms.PeakFileOptions()
options.setMSLevels([1,1])
fh.setOptions(options)
input_map = pms.MSExperiment()
fh.load(input_path, input_map)
input_map.updateRanges()
ff = pms.FeatureFinder()
ff.setLogType(pms.LogType.CMD)
features = pms.FeatureMap()
name = pms.FeatureFinderAlgorithmPicked.getProductName()
ff.run(name, input_map, features, params, seeds)
features.setUniqueIds()
addDataProcessing(features, params, pms.ProcessingAction.QUANTITATION)
algorithm.align(map_, trafo)
if out_files:
pms.MapAlignmentTransformer.transformRetentionTimes(map_, trafo)
addDataProcessing(map_, params, pms.ProcessingAction.ALIGNMENT)
f_fxml_tmp.store(out_files[i], map_)
else:
map_ = pms.MSExperiment()
pms.MzMLFile().load(in_file, map_)
if in_file == file_:
trafo.fitModel("identity")
else:
algorithm.align(map_, trafo)
if out_files:
pms.MapAlignmentTransformer.transformRetentionTimes(map_, trafo)
addDataProcessing(map_, params, pms.ProcessingAction.ALIGNMENT)
pms.MzMLFile().store(out_files[i], map_)
if out_trafos:
pms.TransformationXMLFile().store(out_trafos[i], trafo)
plog.setProgress(i+1)
plog.endProgress()
exp = pyopenms.MSExperiment()
pyopenms.MzMLFile().load(infile, exp)
exp2 = exp
exp2.clear(False)
chroms = exp2.getChromatograms()
for c in chroms:
if (inverse and not re.search(filter_criteria, key)) \
or (not inverse and re.search(filter_criteria, key)):
chroms_out.append(c)
# Sort chromatograms and store again
print("Retrieved", len(chroms_out), "chromatograms.")
chroms_out.sort(key=lambda x: x.getNativeID())
exp2.setChromatograms(chroms_out)
pyopenms.MzMLFile().store(outfile, exp2)