Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def algorithm(chromatograms, targeted):
# Create empty files as input and finally as output
empty_swath = pyopenms.MSExperiment()
trafo = pyopenms.TransformationDescription()
output = pyopenms.FeatureMap();
# set up featurefinder and run
featurefinder = pyopenms.MRMFeatureFinderScoring()
# set the correct rt use values
scoring_params = pyopenms.MRMFeatureFinderScoring().getDefaults();
scoring_params.setValue("Scores:use_rt_score",'false', '')
featurefinder.setParameters(scoring_params);
featurefinder.pickExperiment(chromatograms, output, targeted, trafo, empty_swath)
# get the pairs
pairs=[]
simple_find_best_feature(output, pairs, targeted)
pairs_corrected = pyopenms.MRMRTNormalizer().rm_outliers( pairs, 0.95, 0.6)
pairs_corrected = [ list(p) for p in pairs_corrected]
# // store transformation, using a linear model as default
trafo_out = pyopenms.TransformationDescription()
trafo_out.setDataPoints(pairs_corrected);
model_params = pyopenms.Param()
model_params.setValue("symmetric_regression", 'false', '');
model_type = "linear";
def algorithm(chromatograms, targeted):
# Create empty files as input and finally as output
empty_swath = pyopenms.MSExperiment()
trafo = pyopenms.TransformationDescription()
output = pyopenms.FeatureMap();
# set up featurefinder and run
featurefinder = pyopenms.MRMFeatureFinderScoring()
# set the correct rt use values
scoring_params = pyopenms.MRMFeatureFinderScoring().getDefaults();
scoring_params.setValue("Scores:use_rt_score",'false', '')
featurefinder.setParameters(scoring_params);
featurefinder.pickExperiment(chromatograms, output, targeted, trafo, empty_swath)
# get the pairs
pairs=[]
simple_find_best_feature(output, pairs, targeted)
pairs_corrected = pyopenms.MRMRTNormalizer().rm_outliers( pairs, 0.95, 0.6)
pairs_corrected = [ list(p) for p in pairs_corrected]
# // store transformation, using a linear model as default
trafo_out = pyopenms.TransformationDescription()
trafo_out.setDataPoints(pairs_corrected);
model_params = pyopenms.Param()
model_params.setValue("symmetric_regression", 'false', '');
model_type = "linear";
def algorithm(chromatograms, targeted):
# Create empty files as input and finally as output
empty_swath = pyopenms.MSExperiment()
trafo = pyopenms.TransformationDescription()
output = pyopenms.FeatureMap();
# set up featurefinder and run
featurefinder = pyopenms.MRMFeatureFinderScoring()
# set the correct rt use values
scoring_params = pyopenms.MRMFeatureFinderScoring().getDefaults();
scoring_params.setValue("Scores:use_rt_score",'false', '')
featurefinder.setParameters(scoring_params);
featurefinder.pickExperiment(chromatograms, output, targeted, trafo, empty_swath)
# get the pairs
pairs=[]
simple_find_best_feature(output, pairs, targeted)
pairs_corrected = pyopenms.MRMRTNormalizer().rm_outliers( pairs, 0.95, 0.6)
pairs_corrected = [ list(p) for p in pairs_corrected]
# // store transformation, using a linear model as default
trafo_out = pyopenms.TransformationDescription()
trafo_out.setDataPoints(pairs_corrected);
model_params = pyopenms.Param()
def main(options):
precursor_tolerance = options.precursor_tolerance
product_tolerance = options.product_tolerance
out = options.outfile
chromat_in = options.infile
traml_in = options.traml_in
# precursor_tolerance = 0.05
# product_tolerance = 0.05
# out = "/tmp/out.mzML"
# chromat_in = "../source/TEST/TOPP/MRMMapping_input.chrom.mzML"
# traml_in = "../source/TEST/TOPP/MRMMapping_input.TraML"
ff = pyopenms.MRMFeatureFinderScoring()
chromatogram_map = pyopenms.MSExperiment()
fh = pyopenms.FileHandler()
fh.loadExperiment(chromat_in, chromatogram_map)
targeted = pyopenms.TargetedExperiment();
tramlfile = pyopenms.TraMLFile();
tramlfile.load(traml_in, targeted);
output = algorithm(chromatogram_map, targeted, precursor_tolerance, product_tolerance)
pyopenms.MzMLFile().store(out, output);
def main(options):
precursor_tolerance = options.precursor_tolerance
product_tolerance = options.product_tolerance
out = options.outfile
chromat_in = options.infile
traml_in = options.traml_in
# precursor_tolerance = 0.05
# product_tolerance = 0.05
# out = "/tmp/out.mzML"
# chromat_in = "../source/TEST/TOPP/MRMMapping_input.chrom.mzML"
# traml_in = "../source/TEST/TOPP/MRMMapping_input.TraML"
ff = pyopenms.MRMFeatureFinderScoring()
chromatogram_map = pyopenms.MSExperiment()
fh = pyopenms.FileHandler()
fh.loadExperiment(chromat_in, chromatogram_map)
targeted = pyopenms.TargetedExperiment();
tramlfile = pyopenms.TraMLFile();
tramlfile.load(traml_in, targeted);
output = algorithm(chromatogram_map, targeted, precursor_tolerance, product_tolerance)
pyopenms.MzMLFile().store(out, output);
# the RT space (e.g. for 100 second RT space, set it to 100)
rt_normalization_factor = 100.0
pp_params = pp.getDefaults();
pp_params.setValue("PeakPickerMRM:remove_overlapping_peaks", options.remove_overlapping_peaks, '')
pp_params.setValue("PeakPickerMRM:method", options.method, '')
if (metabolomics):
# Need to change those for metabolomics and very short peaks!
pp_params.setValue("PeakPickerMRM:signal_to_noise", 0.01, '')
pp_params.setValue("PeakPickerMRM:peak_width", 0.1, '')
pp_params.setValue("PeakPickerMRM:gauss_width", 0.1, '')
pp_params.setValue("resample_boundary", 0.05, '')
pp_params.setValue("compute_peak_quality", "true", '')
pp.setParameters(pp_params)
scorer = pyopenms.MRMFeatureFinderScoring()
scoring_params = scorer.getDefaults();
# Only report the top 5 features
scoring_params.setValue("stop_report_after_feature", 5, '')
scoring_params.setValue("rt_normalization_factor", rt_normalization_factor, '')
scorer.setParameters(scoring_params);
chromatograms = pyopenms.MSExperiment()
fh = pyopenms.FileHandler()
fh.loadExperiment(chromat_in, chromatograms)
targeted = pyopenms.TargetedExperiment();
tramlfile = pyopenms.TraMLFile();
tramlfile.load(traml_in, targeted);
trafoxml = pyopenms.TransformationXMLFile()
trafo = pyopenms.TransformationDescription()
if trafo_in is not None: