Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
pp_params.setValue("PeakPickerMRM:signal_to_noise", 0.01, '')
pp_params.setValue("PeakPickerMRM:peak_width", 0.1, '')
pp_params.setValue("PeakPickerMRM:gauss_width", 0.1, '')
pp_params.setValue("resample_boundary", 0.05, '')
pp_params.setValue("compute_peak_quality", "true", '')
pp.setParameters(pp_params)
scorer = pyopenms.MRMFeatureFinderScoring()
scoring_params = scorer.getDefaults();
# Only report the top 5 features
scoring_params.setValue("stop_report_after_feature", 5, '')
scoring_params.setValue("rt_normalization_factor", rt_normalization_factor, '')
scorer.setParameters(scoring_params);
chromatograms = pyopenms.MSExperiment()
fh = pyopenms.FileHandler()
fh.loadExperiment(chromat_in, chromatograms)
targeted = pyopenms.TargetedExperiment();
tramlfile = pyopenms.TraMLFile();
tramlfile.load(traml_in, targeted);
trafoxml = pyopenms.TransformationXMLFile()
trafo = pyopenms.TransformationDescription()
if trafo_in is not None:
model_params = pyopenms.Param()
model_params.setValue("symmetric_regression", "false", "", [])
model_type = "linear"
trafoxml.load(trafo_in, trafo, True)
trafo.fitModel(model_type, model_params);
light_targeted = pyopenms.LightTargetedExperiment();
def main(options):
precursor_tolerance = options.precursor_tolerance
product_tolerance = options.product_tolerance
out = options.outfile
chromat_in = options.infile
traml_in = options.traml_in
# precursor_tolerance = 0.05
# product_tolerance = 0.05
# out = "/tmp/out.mzML"
# chromat_in = "../source/TEST/TOPP/MRMMapping_input.chrom.mzML"
# traml_in = "../source/TEST/TOPP/MRMMapping_input.TraML"
ff = pyopenms.MRMFeatureFinderScoring()
chromatogram_map = pyopenms.MSExperiment()
fh = pyopenms.FileHandler()
fh.loadExperiment(chromat_in, chromatogram_map)
targeted = pyopenms.TargetedExperiment();
tramlfile = pyopenms.TraMLFile();
tramlfile.load(traml_in, targeted);
output = algorithm(chromatogram_map, targeted, precursor_tolerance, product_tolerance)
pyopenms.MzMLFile().store(out, output);
def main(options):
precursor_tolerance = options.precursor_tolerance
product_tolerance = options.product_tolerance
out = options.outfile
chromat_in = options.infile
traml_in = options.traml_in
# precursor_tolerance = 0.05
# product_tolerance = 0.05
# out = "/tmp/out.mzML"
# chromat_in = "../source/TEST/TOPP/MRMMapping_input.chrom.mzML"
# traml_in = "../source/TEST/TOPP/MRMMapping_input.TraML"
ff = pyopenms.MRMFeatureFinderScoring()
chromatogram_map = pyopenms.MSExperiment()
fh = pyopenms.FileHandler()
fh.loadExperiment(chromat_in, chromatogram_map)
targeted = pyopenms.TargetedExperiment();
tramlfile = pyopenms.TraMLFile();
tramlfile.load(traml_in, targeted);
output = algorithm(chromatogram_map, targeted, precursor_tolerance, product_tolerance)
pyopenms.MzMLFile().store(out, output);
def _acquisition_grid(self):
ms_experiment = ms.MSExperiment()
file_handler = ms.FileHandler()
file_handler.loadExperiment(self.ms_file_path, ms_experiment)
pixel_coords = [(spec.getRT(), 0.0) for spec in ms_experiment]
return {
ACQ_GEOMETRY_KEYS.AcqGridSection.REGULAR_GRID: False,
ACQ_GEOMETRY_KEYS.AcqGridSection.PIXEL_CORRD_LIST: pixel_coords
}
def main(options):
# load TraML file
targeted = pyopenms.TargetedExperiment();
pyopenms.TraMLFile().load(options.traml_in, targeted);
# Create empty files as input and finally as output
empty_swath = pyopenms.MSExperiment()
trafo = pyopenms.TransformationDescription()
output = pyopenms.MSExperiment();
# load input
for infile in options.infiles:
exp = pyopenms.MSExperiment()
pyopenms.FileHandler().loadExperiment(infile, exp)
transition_exp_used = pyopenms.TargetedExperiment();
do_continue = True
if options.is_swath:
do_continue = pyopenms.OpenSwathHelper().checkSwathMapAndSelectTransitions(exp, targeted, transition_exp_used, options.min_upper_edge_dist)
else:
transition_exp_used = targeted
if do_continue:
# set up extractor and run
tmp_out = pyopenms.MSExperiment();
extractor = pyopenms.ChromatogramExtractor()
extractor.extractChromatograms(exp, tmp_out, targeted, options.extraction_window, options.ppm, trafo, options.rt_extraction_window, options.extraction_function)
# add all chromatograms to the output
for chrom in tmp_out.getChromatograms():
def main(options):
# make sure that the ids are "correct" for the testcase
date_time = pyopenms.DateTime();
if options.test:
date_time.set("1999-12-31 23:59:59");
pyopenms.UniqueIdGenerator().setSeed(date_time);
else:
date_time = pyopenms.DateTime.now();
exp = pyopenms.MSExperiment()
out_map = pyopenms.ConsensusMap()
pyopenms.FileHandler().loadExperiment(options.infile, exp)
exp.updateRanges()
#
# 1. filter MS1 level (only keep MS1)
#
tmp = copy.copy(exp)
tmp.clear(False);
for spectrum in exp:
if spectrum.getMSLevel() == 1:
tmp.push_back(spectrum)
exp = tmp
exp.sortSpectra(True)
#
# 2. set parameters
#
def main(options):
# load chromatograms
chromatograms = pyopenms.MSExperiment()
fh = pyopenms.FileHandler()
fh.loadExperiment(options.infile, chromatograms)
# load TraML file
targeted = pyopenms.TargetedExperiment();
tramlfile = pyopenms.TraMLFile();
tramlfile.load(options.traml_in, targeted);
trafo_out = algorithm(chromatograms, targeted)
pyopenms.TransformationXMLFile().store(options.outfile, trafo_out);
def read_ms1_experiment(filepath):
source_experiment = MSExperiment()
file_handler = FileHandler()
# bytes is required by `loadExperiment()` called below
typed_fp = filepath if isinstance(filepath, bytes) else filepath.encode()
file_handler.loadExperiment(typed_fp, source_experiment)
ms1_experiment = MSExperiment()
for spectrum in source_experiment:
if spectrum.getMSLevel() == 1:
ms1_experiment.addSpectrum(spectrum)
return ms1_experiment