Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
gplt.sankey(start=map_start_points(), end=map_end_points())
gplt.sankey(start=list_start_points, end=list_end_points)
gplt.sankey(start=list_start_points, end=list_end_points)
gplt.sankey(start=series_start_points, end=series_end_points)
gplt.sankey(start=series_start_points, end=series_end_points)
gplt.sankey(start=map_start_points(), end=map_end_points())
gplt.sankey(start=map_start_points(), end=map_end_points())
gplt.sankey(dataframe_gaussian_points, start='starts', end='ends')
gplt.sankey(path=list_paths)
gplt.sankey(path=series_paths)
gplt.sankey(path=map_paths())
gplt.sankey(dataframe_gaussian_points, path='paths')
finally:
plt.close('all')
def test_sankey(self):
try:
gplt.sankey(path=list_paths, projection=gcrs.PlateCarree(), edgecolor='white')
gplt.sankey(path=list_paths, projection=gcrs.PlateCarree(), color='white')
gplt.sankey(path=list_paths, projection=gcrs.PlateCarree(), linewidth=1)
gplt.sankey(path=list_paths, projection=gcrs.PlateCarree(), linestyle='--')
finally:
plt.close()
def test_sankey(self):
try:
gplt.sankey(start=map_start_points(), end=map_end_points())
gplt.sankey(start=map_start_points(), end=map_end_points())
gplt.sankey(start=list_start_points, end=list_end_points)
gplt.sankey(start=list_start_points, end=list_end_points)
gplt.sankey(start=series_start_points, end=series_end_points)
gplt.sankey(start=series_start_points, end=series_end_points)
gplt.sankey(start=map_start_points(), end=map_end_points())
gplt.sankey(start=map_start_points(), end=map_end_points())
gplt.sankey(dataframe_gaussian_points, start='starts', end='ends')
gplt.sankey(path=list_paths)
gplt.sankey(path=series_paths)
gplt.sankey(path=map_paths())
gplt.sankey(dataframe_gaussian_points, path='paths')
finally:
plt.close('all')
la_flights, scale='Passengers', hue='Passengers', cmap='Purples', ax=axarr[0][1]
)
ax.set_global()
ax.outline_patch.set_visible(True)
ax.stock_img()
ax = gplt.sankey(
la_flights, scale='Passengers', hue='Passengers', cmap='Purples', ax=axarr[1][0]
)
ax.set_global()
ax.outline_patch.set_visible(True)
ax.gridlines()
ax.coastlines()
ax.add_feature(cartopy.feature.BORDERS)
ax = gplt.sankey(
la_flights, scale='Passengers', hue='Passengers', cmap='Purples', ax=axarr[1][1]
)
ax.set_global()
ax.outline_patch.set_visible(True)
ax.coastlines()
ax.add_feature(cartopy.feature.LAND)
ax.add_feature(cartopy.feature.OCEAN)
ax.add_feature(cartopy.feature.LAKES)
ax.add_feature(cartopy.feature.RIVERS)
plt.savefig("los-angeles-flights.png", bbox_inches='tight', pad_inches=0.1)
ax = gplt.sankey(
la_flights, scale='Passengers', hue='Passengers', cmap='Purples', ax=axarr[0][0]
)
ax.set_global()
ax.outline_patch.set_visible(True)
ax.coastlines()
ax = gplt.sankey(
la_flights, scale='Passengers', hue='Passengers', cmap='Purples', ax=axarr[0][1]
)
ax.set_global()
ax.outline_patch.set_visible(True)
ax.stock_img()
ax = gplt.sankey(
la_flights, scale='Passengers', hue='Passengers', cmap='Purples', ax=axarr[1][0]
)
ax.set_global()
ax.outline_patch.set_visible(True)
ax.gridlines()
ax.coastlines()
ax.add_feature(cartopy.feature.BORDERS)
ax = gplt.sankey(
la_flights, scale='Passengers', hue='Passengers', cmap='Purples', ax=axarr[1][1]
)
ax.set_global()
ax.outline_patch.set_visible(True)
ax.coastlines()
ax.add_feature(cartopy.feature.LAND)
ax.add_feature(cartopy.feature.OCEAN)
interactive scrolly-panny version of this webmap built with ``mplleaflet``. To learn more about
``mplleaflet``, refer to `the mplleaflet GitHub repo `_.
"""
import geopandas as gpd
import geoplot as gplt
import matplotlib.pyplot as plt
import mplleaflet
from matplotlib.colors import LinearSegmentedColormap
napoleon_troop_movements = gpd.read_file(gplt.datasets.get_path('napoleon_troop_movements'))
colors = [(215/255, 193/255, 126/255), (37/255, 37/255, 37/255)]
cm = LinearSegmentedColormap.from_list('minard', colors)
gplt.sankey(
napoleon_troop_movements,
scale='survivors', limits=(0.5, 45),
hue='direction',
cmap=cm
)
fig = plt.gcf()
plt.savefig("minard-napoelon-russia.png", bbox_inches='tight', pad_inches=0.1)
`Click here to see the interactive webmap version.
`_
"""
import geopandas as gpd
import geoplot as gplt
import matplotlib.pyplot as plt
import mplleaflet
from matplotlib.colors import LinearSegmentedColormap
napoleon_troop_movements = gpd.read_file(gplt.datasets.get_path('napoleon_troop_movements'))
colors = [(215/255, 193/255, 126/255), (37/255, 37/255, 37/255)]
cm = LinearSegmentedColormap.from_list('minard', colors)
gplt.sankey(
napoleon_troop_movements,
scale='survivors', limits=(0.5, 45),
hue='direction',
cmap=cm
)
fig = plt.gcf()
plt.savefig("minard-napoelon-russia.png", bbox_inches='tight', pad_inches=0.1)
Sankey of traffic volumes in Washington DC
==========================================
This example plots
`annual average daily traffic volume `_
in Washington DC.
"""
import geopandas as gpd
import geoplot as gplt
import geoplot.crs as gcrs
import matplotlib.pyplot as plt
dc_roads = gpd.read_file(gplt.datasets.get_path('dc_roads'))
gplt.sankey(
dc_roads, projection=gcrs.AlbersEqualArea(),
scale='aadt', limits=(0.1, 10), color='black'
)
plt.title("Streets in Washington DC by Average Daily Traffic, 2015")
plt.savefig("dc-street-network.png", bbox_inches='tight', pad_inches=0.1)
Sankey of traffic volumes in Washington DC
==========================================
This example demonstrates an application of the ``sankey`` plot type to a geospatial dataset of
`annual average daily traffic volume
`_ in Washington DC.
"""
import geopandas as gpd
import geoplot as gplt
import geoplot.crs as gcrs
import matplotlib.pyplot as plt
dc_roads = gpd.read_file(gplt.datasets.get_path('dc_roads'))
gplt.sankey(
dc_roads, projection=gcrs.AlbersEqualArea(),
scale='aadt', limits=(0.1, 10), color='black'
)
plt.title("Streets in Washington DC by Average Daily Traffic, 2015")
plt.savefig("dc-street-network.png", bbox_inches='tight', pad_inches=0.1)
import geopandas as gpd
import geoplot as gplt
import geoplot.crs as gcrs
import matplotlib.pyplot as plt
import cartopy
la_flights = gpd.read_file(gplt.datasets.get_path('la_flights'))
f, axarr = plt.subplots(2, 2, figsize=(12, 12), subplot_kw={
'projection': gcrs.Orthographic(central_latitude=40.7128, central_longitude=-74.0059)
})
plt.suptitle('Popular Flights out of Los Angeles, 2016', fontsize=16)
plt.subplots_adjust(top=0.95)
ax = gplt.sankey(
la_flights, scale='Passengers', hue='Passengers', cmap='Purples', ax=axarr[0][0]
)
ax.set_global()
ax.outline_patch.set_visible(True)
ax.coastlines()
ax = gplt.sankey(
la_flights, scale='Passengers', hue='Passengers', cmap='Purples', ax=axarr[0][1]
)
ax.set_global()
ax.outline_patch.set_visible(True)
ax.stock_img()
ax = gplt.sankey(
la_flights, scale='Passengers', hue='Passengers', cmap='Purples', ax=axarr[1][0]
)