Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def test_aggplot(self, projection,
sankey_hue,
legend_vars,
sankey_data_inputs):
kwargs = {'projection': projection, 'hue': sankey_hue}
kwargs = {**kwargs, **legend_vars, **sankey_data_inputs}
try: gplt.aggplot(agg_data, **kwargs)
finally: plt.close()
def test_aggplot(self):
try:
gplt.aggplot(dataframe_gaussian_points, hue='mock_category',
projection=gcrs.PlateCarree())
gplt.aggplot(dataframe_gaussian_points, hue='mock_category', by='mock_category',
projection=gcrs.PlateCarree())
finally:
plt.close()
def test_aggplot(self):
try:
gplt.aggplot(series_gaussian_points, hue=list_hue_values)
gplt.aggplot(dataframe_gaussian_points, hue=list_hue_values)
gplt.aggplot(dataframe_gaussian_points, hue=list_hue_values)
gplt.aggplot(dataframe_gaussian_points, hue=series_hue_values)
gplt.aggplot(dataframe_gaussian_points, hue=map_hue_values())
gplt.aggplot(dataframe_gaussian_points, hue='hue_var')
gplt.aggplot(dataframe_gaussian_points, hue=list_hue_values, by='mock_category')
# series
gplt.aggplot(dataframe_gaussian_points, hue=list_hue_values,
by=dataframe_gaussian_points['mock_category'])
# list
gplt.aggplot(dataframe_gaussian_points, hue=list_hue_values,
by=list(dataframe_gaussian_points['mock_category']))
# map
gplt.aggplot(dataframe_gaussian_points, hue=list_hue_values,
by=map(lambda v: v, list(dataframe_gaussian_points['mock_category'])))
gplt.aggplot(dataframe_gaussian_points, hue=list_hue_values, by='mock_category',
geometry=aggplot_geometries)
def test_aggplot(self):
try:
gplt.aggplot(series_gaussian_points, hue=list_hue_values)
gplt.aggplot(dataframe_gaussian_points, hue=list_hue_values)
gplt.aggplot(dataframe_gaussian_points, hue=list_hue_values)
gplt.aggplot(dataframe_gaussian_points, hue=series_hue_values)
gplt.aggplot(dataframe_gaussian_points, hue=map_hue_values())
gplt.aggplot(dataframe_gaussian_points, hue='hue_var')
gplt.aggplot(dataframe_gaussian_points, hue=list_hue_values, by='mock_category')
# series
gplt.aggplot(dataframe_gaussian_points, hue=list_hue_values,
by=dataframe_gaussian_points['mock_category'])
# list
gplt.aggplot(dataframe_gaussian_points, hue=list_hue_values,
by=list(dataframe_gaussian_points['mock_category']))
# map
gplt.aggplot(dataframe_gaussian_points, hue=list_hue_values,
gplt.aggplot(dataframe_gaussian_points, hue=list_hue_values, by='mock_category')
# series
gplt.aggplot(dataframe_gaussian_points, hue=list_hue_values,
by=dataframe_gaussian_points['mock_category'])
# list
gplt.aggplot(dataframe_gaussian_points, hue=list_hue_values,
by=list(dataframe_gaussian_points['mock_category']))
# map
gplt.aggplot(dataframe_gaussian_points, hue=list_hue_values,
by=map(lambda v: v, list(dataframe_gaussian_points['mock_category'])))
gplt.aggplot(dataframe_gaussian_points, hue=list_hue_values, by='mock_category',
geometry=aggplot_geometries)
gplt.aggplot(dataframe_gaussian_points, hue=list_hue_values,
by=dataframe_gaussian_points['mock_category'],
geometry=aggplot_geometries) # Series
gplt.aggplot(dataframe_gaussian_points, hue=list_hue_values,
by=list(dataframe_gaussian_points['mock_category']),
geometry=aggplot_geometries) # List
gplt.aggplot(dataframe_gaussian_points, hue=list_hue_values,
by=map(lambda v: v, list(dataframe_gaussian_points['mock_category'])),
geometry=aggplot_geometries) # Map
finally:
plt.close('all')
gplt.aggplot(dataframe_gaussian_points, hue=map_hue_values())
gplt.aggplot(dataframe_gaussian_points, hue='hue_var')
gplt.aggplot(dataframe_gaussian_points, hue=list_hue_values, by='mock_category')
# series
gplt.aggplot(dataframe_gaussian_points, hue=list_hue_values,
by=dataframe_gaussian_points['mock_category'])
# list
gplt.aggplot(dataframe_gaussian_points, hue=list_hue_values,
by=list(dataframe_gaussian_points['mock_category']))
# map
gplt.aggplot(dataframe_gaussian_points, hue=list_hue_values,
by=map(lambda v: v, list(dataframe_gaussian_points['mock_category'])))
gplt.aggplot(dataframe_gaussian_points, hue=list_hue_values, by='mock_category',
geometry=aggplot_geometries)
gplt.aggplot(dataframe_gaussian_points, hue=list_hue_values,
by=dataframe_gaussian_points['mock_category'],
geometry=aggplot_geometries) # Series
gplt.aggplot(dataframe_gaussian_points, hue=list_hue_values,
by=list(dataframe_gaussian_points['mock_category']),
geometry=aggplot_geometries) # List
gplt.aggplot(dataframe_gaussian_points, hue=list_hue_values,
by=map(lambda v: v, list(dataframe_gaussian_points['mock_category'])),
geometry=aggplot_geometries) # Map
finally:
plt.close('all')
# Plot the data.
import geoplot as gplt
import geoplot.crs as gcrs
import numpy as np
import matplotlib.pyplot as plt
f, axarr = plt.subplots(3, 1, figsize=(12, 12), subplot_kw={
'projection': gcrs.AlbersEqualArea(central_latitude=40.7128, central_longitude=-74.0059)
})
plt.suptitle('Max(Injuries) in Collision by Area, 2016', fontsize=16)
plt.subplots_adjust(top=0.95)
ax1 = gplt.aggplot(collisions, projection=gcrs.AlbersEqualArea(),
hue='NUMBER OF PERSONS INJURED', agg=np.max, cmap='Reds',
nmin=100, nmax=500,
linewidth=0.5, edgecolor='white',
ax=axarr[0])
ax1.set_title("No Geometry (Quadtree)")
ax2 = gplt.aggplot(collisions, projection=gcrs.AlbersEqualArea(),
hue='NUMBER OF PERSONS INJURED', agg=np.max, cmap='Reds', by='ZIP CODE',
linewidth=0.5, edgecolor='white',
ax=axarr[1])
ax2.set_title("Categorical Geometry (Convex Hull)")
zip_codes = gplt.datasets.load('nyc-zip-codes')
ax3 = gplt.aggplot(collisions, projection=gcrs.AlbersEqualArea(),
f, axarr = plt.subplots(3, 1, figsize=(12, 12), subplot_kw={
'projection': gcrs.AlbersEqualArea(central_latitude=40.7128, central_longitude=-74.0059)
})
plt.suptitle('Max(Injuries) in Collision by Area, 2016', fontsize=16)
plt.subplots_adjust(top=0.95)
ax1 = gplt.aggplot(collisions, projection=gcrs.AlbersEqualArea(),
hue='NUMBER OF PERSONS INJURED', agg=np.max, cmap='Reds',
nmin=100, nmax=500,
linewidth=0.5, edgecolor='white',
ax=axarr[0])
ax1.set_title("No Geometry (Quadtree)")
ax2 = gplt.aggplot(collisions, projection=gcrs.AlbersEqualArea(),
hue='NUMBER OF PERSONS INJURED', agg=np.max, cmap='Reds', by='ZIP CODE',
linewidth=0.5, edgecolor='white',
ax=axarr[1])
ax2.set_title("Categorical Geometry (Convex Hull)")
zip_codes = gplt.datasets.load('nyc-zip-codes')
ax3 = gplt.aggplot(collisions, projection=gcrs.AlbersEqualArea(),
hue='NUMBER OF PERSONS INJURED', agg=np.max, by='ZIP CODE', geometry=zip_codes.geometry,
cmap='Reds', linewidth=0.5, edgecolor='white',
ax=axarr[2])
ax3.set_title("Geometry Provided (Choropleth)")
plt.savefig("aggplot-collisions-1.png", bbox_inches='tight', pad_inches=0.1)
if by:
if df[by].isnull().any():
warnings.warn('The "{0}" column included null values. The offending records were dropped'.format(by))
df = df.dropna(subset=[by])
gdf = gdf.loc[df.index]
vc = df[by].value_counts()
if (vc < 3).any():
warnings.warn('Grouping by "{0}" included clusters with fewer than three points, which cannot be made '
'polygonal. The offending records were dropped.'.format(by))
where = df[by].isin((df[by].value_counts() > 2).where(lambda b: b).dropna().index.values)
gdf = gdf.loc[where]
gdf[by] = df[by]
gplt.aggplot(gdf, figsize=figsize, hue='nullity', agg=np.average, cmap=cmap, by=by, edgecolor='None', **kwargs)
ax = plt.gca()
if inline:
warnings.warn(
"The 'inline' argument has been deprecated, and will be removed in a future version "
"of missingno."
)
plt.show()
else:
return ax