Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def test_scale_params(kwargs):
return pointplot(p_df, **kwargs).get_figure()
def test_pointplot(self):
try:
gplt.pointplot(list_gaussian_points, projection=gcrs.PlateCarree(), color='white')
gplt.pointplot(list_gaussian_points, projection=gcrs.PlateCarree(), s=5)
gplt.pointplot(list_gaussian_points, projection=gcrs.PlateCarree(),
legend_kwargs={'fancybox': False})
finally: plt.close()
import sys; sys.path.insert(0, '../')
import geoplot as gplt
from geoplot import crs as gcrs
import geopandas as gpd
# cf. https://github.com/Toblerity/Shapely/issues/435
# Fiona/Shapely/Geopandas test.
cities = gpd.read_file("../data/cities/citiesx010g.shp")
census_tracts = gpd.read_file("../data/nyc_census_tracts/census_tracts_2010.geojson")
# Cartopy test.
gplt.pointplot(cities.head(50), extent=(10, 20, 10, 20))
def test_pointplot(self):
try:
gplt.pointplot(list_gaussian_points, projection=gcrs.PlateCarree(), color='white')
gplt.pointplot(list_gaussian_points, projection=gcrs.PlateCarree(), s=5)
gplt.pointplot(list_gaussian_points, projection=gcrs.PlateCarree(),
legend_kwargs={'fancybox': False})
finally: plt.close()
ax=axarr[1][0], scale_func=log_scale, **pointplot_kwargs
)
axarr[1][0].set_title("Log Scale")
def power_scale(minval, maxval):
def scalar(val):
val = val + abs(minval) + 1
return (val/1000)**2
return scalar
gplt.polyplot(
contiguous_usa.geometry,
ax=axarr[1][1], **polyplot_kwargs
)
gplt.pointplot(
continental_usa_cities.query("POP_2010 > 10000"),
ax=axarr[1][1], scale_func=power_scale, **pointplot_kwargs
)
axarr[1][1].set_title("Power Scale")
plt.suptitle('Continental US Cities by Elevation, 2016', fontsize=16)
plt.subplots_adjust(top=0.95)
plt.savefig("usa-city-elevations.png", bbox_inches='tight')
import geopandas as gpd
import geoplot as gplt
import geoplot.crs as gcrs
import matplotlib.pyplot as plt
nyc_boroughs = gpd.read_file(gplt.datasets.get_path('nyc_boroughs'))
collisions = gpd.read_file(gplt.datasets.get_path('nyc_collision_factors'))
ax = gplt.quadtree(
collisions, nmax=1,
projection=gcrs.AlbersEqualArea(), clip=nyc_boroughs,
facecolor='lightgray', edgecolor='white', zorder=0
)
gplt.pointplot(collisions, s=1, ax=ax)
plt.title("New York Ciy Traffic Collisions, 2016")
plt.savefig("nyc-collisions-quadtree.png", bbox_inches='tight', pad_inches=0)
`_
"""
import geopandas as gpd
import geoplot as gplt
import geoplot.crs as gcrs
import matplotlib.pyplot as plt
import mplleaflet
boston_airbnb_listings = gpd.read_file(gplt.datasets.get_path('boston_airbnb_listings'))
ax = gplt.kdeplot(
boston_airbnb_listings, cmap='viridis', projection=gcrs.WebMercator(), figsize=(12, 12),
shade=True
)
gplt.pointplot(boston_airbnb_listings, s=1, color='black', ax=ax)
gplt.webmap(boston_airbnb_listings, ax=ax)
plt.title('Boston AirBnB Locations, 2016', fontsize=18)
fig = plt.gcf()
plt.savefig("boston-airbnb-kde.png", bbox_inches='tight', pad_inches=0.1)
# mplleaflet.show(fig)
continental_usa_cities = gpd.read_file(gplt.datasets.get_path('usa_cities'))
continental_usa_cities = continental_usa_cities.query('STATE not in ["AK", "HI", "PR"]')
contiguous_usa = gpd.read_file(gplt.datasets.get_path('contiguous_usa'))
proj = gcrs.AlbersEqualArea(central_longitude=-98, central_latitude=39.5)
f, axarr = plt.subplots(2, 2, figsize=(12, 8), subplot_kw={'projection': proj})
polyplot_kwargs = {'facecolor': (0.9, 0.9, 0.9), 'linewidth': 0}
pointplot_kwargs = {
'scale': 'ELEV_IN_FT', 'edgecolor': 'white', 'linewidth': 0.5, 'color': 'black'
}
gplt.polyplot(contiguous_usa.geometry, ax=axarr[0][0], **polyplot_kwargs)
gplt.pointplot(
continental_usa_cities.query("POP_2010 > 10000"),
ax=axarr[0][0], limits=(0.1, 10), **pointplot_kwargs
)
axarr[0][0].set_title("Linear Scale")
def identity_scale(minval, maxval):
def scalar(val):
return 2
return scalar
gplt.polyplot(contiguous_usa.geometry, ax=axarr[0][1], **polyplot_kwargs)
gplt.pointplot(
continental_usa_cities.query("POP_2010 > 10000"),
ax=axarr[0][1], scale_func=identity_scale, **pointplot_kwargs
)
ax2 = plt.subplot(122, projection=proj)
ax1 = gplt.pointplot(
nyc_fatal_collisions, projection=proj,
hue='BOROUGH', cmap='Set1',
edgecolor='white', linewidth=0.5,
scale='NUMBER OF PERSONS KILLED', limits=(8, 24),
legend=True, legend_var='scale',
legend_kwargs={'loc': 'upper left', 'markeredgecolor': 'black'},
legend_values=[2, 1], legend_labels=['2 Fatalities', '1 Fatality'],
ax=ax1
)
gplt.polyplot(nyc_boroughs, ax=ax1)
ax1.set_title("Fatal Crashes in New York City, 2016")
gplt.pointplot(
nyc_injurious_collisions, projection=proj,
hue='BOROUGH', cmap='Set1',
edgecolor='white', linewidth=0.5,
scale='NUMBER OF PERSONS INJURED', limits=(4, 20),
legend=True, legend_var='scale',
legend_kwargs={'loc': 'upper left', 'markeredgecolor': 'black'},
legend_values=[20, 15, 10, 5, 1],
legend_labels=['20 Injuries', '15 Injuries', '10 Injuries', '5 Injuries', '1 Injury'],
ax=ax2
)
gplt.polyplot(nyc_boroughs, ax=ax2, projection=proj)
ax2.set_title("Injurious Crashes in New York City, 2016")
plt.savefig("nyc-collisions-map.png", bbox_inches='tight', pad_inches=0)
continental_usa_cities = gpd.read_file(gplt.datasets.get_path('usa_cities'))
continental_usa_cities = continental_usa_cities.query('STATE not in ["AK", "HI", "PR"]')
contiguous_usa = gpd.read_file(gplt.datasets.get_path('contiguous_usa'))
scheme = mc.Quantiles(continental_usa_cities['POP_2010'], k=5)
ax = gplt.polyplot(
contiguous_usa,
zorder=-1,
linewidth=1,
projection=gcrs.AlbersEqualArea(),
edgecolor='white',
facecolor='lightgray',
figsize=(8, 12)
)
gplt.pointplot(
continental_usa_cities,
scale='POP_2010',
limits=(2, 30),
hue='POP_2010',
cmap='Blues',
scheme=scheme,
legend=True,
legend_var='scale',
legend_values=[8000000, 2000000, 1000000, 100000],
legend_labels=['8 million', '2 million', '1 million', '100 thousand'],
legend_kwargs={'frameon': False, 'loc': 'lower right'},
ax=ax
)
plt.title("Large cities in the contiguous United States, 2010")