Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def test_cartogram(self):
try:
gplt.cartogram(series_gaussian_polys, scale=list_hue_values)
gplt.cartogram(dataframe_gaussian_polys, scale=list_hue_values)
gplt.cartogram(dataframe_gaussian_polys, hue=list_hue_values, scale=list_hue_values)
gplt.cartogram(dataframe_gaussian_polys, hue=series_hue_values, scale=list_hue_values)
gplt.cartogram(dataframe_gaussian_polys, hue=map_hue_values(), scale=list_hue_values)
gplt.cartogram(dataframe_gaussian_polys, hue='hue_var', scale=list_hue_values)
finally:
plt.close('all')
def test_cartogram(self, projection, scale_dataset, hue_vars, legend_vars, trace):
kwargs = {'projection': projection, 'scale': scale_dataset, 'trace': trace}
kwargs = {**kwargs, **hue_vars, **legend_vars}
try: gplt.cartogram(gaussian_polys, **kwargs)
finally: plt.close()
[cartogram, poly_df, {'scale': 'var', 'linewidth': 0, 'legend': True}],
[cartogram, poly_df,
{'scale': 'var', 'linewidth': 0, 'legend': True,
'projection': AlbersEqualArea()}],
[voronoi, p_df, {'facecolor': 'lightgray', 'edgecolor': 'white'}],
[voronoi, p_df,
{'facecolor': 'lightgray', 'edgecolor': 'white',
'projection': AlbersEqualArea()}],
[quadtree, p_df, {'facecolor': 'lightgray', 'edgecolor': 'white'}],
[quadtree, p_df,
{'facecolor': 'lightgray', 'edgecolor': 'white', 'projection': AlbersEqualArea()}],
[sankey, ls_df, {'scale': 'var', 'legend': True}],
[sankey, ls_df, {'scale': 'var', 'legend': True, 'projection': AlbersEqualArea()}]
])
def test_plot_basic(func, df, kwargs):
return func(df, **kwargs).get_figure()
def test_cartogram(self):
try:
gplt.cartogram(dataframe_gaussian_polys, scale='hue_var',
projection=gcrs.PlateCarree(), facecolor='white')
gplt.cartogram(dataframe_gaussian_polys, scale='hue_var',
projection=gcrs.PlateCarree(), legend_kwargs={'fancybox': False})
finally:
plt.close()
import geopandas as gpd
import geoplot as gplt
import geoplot.crs as gcrs
import matplotlib.pyplot as plt
import mapclassify as mc
# load the data
obesity_by_state = pd.read_csv(gplt.datasets.get_path('obesity_by_state'), sep='\t')
contiguous_usa = gpd.read_file(gplt.datasets.get_path('contiguous_usa'))
contiguous_usa['Obesity Rate'] = contiguous_usa['state'].map(
lambda state: obesity_by_state.query("State == @state").iloc[0]['Percent']
)
scheme = mc.Quantiles(contiguous_usa['Obesity Rate'], k=5)
ax = gplt.cartogram(
contiguous_usa,
scale='Obesity Rate', limits=(0.75, 1),
projection=gcrs.AlbersEqualArea(central_longitude=-98, central_latitude=39.5),
hue='Obesity Rate', cmap='Reds', scheme=scheme,
linewidth=0.5,
legend=True, legend_kwargs={'loc': 'lower right'}, legend_var='hue',
figsize=(8, 12)
)
gplt.polyplot(contiguous_usa, facecolor='lightgray', edgecolor='None', ax=ax)
plt.title("Adult Obesity Rate by State, 2013")
plt.savefig("obesity.png", bbox_inches='tight', pad_inches=0.1)
import pandas as pd
import geopandas as gpd
import geoplot as gplt
import geoplot.crs as gcrs
import matplotlib.pyplot as plt
# load the data
obesity_by_state = pd.read_csv(gplt.datasets.get_path('obesity_by_state'), sep='\t')
contiguous_usa = gpd.read_file(gplt.datasets.get_path('contiguous_usa'))
contiguous_usa['Obesity Rate'] = contiguous_usa['state'].map(
lambda state: obesity_by_state.query("State == @state").iloc[0]['Percent']
)
ax = gplt.cartogram(
contiguous_usa,
scale='Obesity Rate', limits=(0.75, 1),
projection=gcrs.AlbersEqualArea(central_longitude=-98, central_latitude=39.5),
hue='Obesity Rate', cmap='Reds', k=5,
linewidth=0.5,
legend=True, legend_kwargs={'loc': 'lower right'}, legend_var='hue',
figsize=(12, 12)
)
gplt.polyplot(contiguous_usa, facecolor='lightgray', edgecolor='None', ax=ax)
plt.title("Adult Obesity Rate by State, 2013")
plt.savefig("obesity.png", bbox_inches='tight', pad_inches=0.1)
import mapclassify
gpd_per_person = world['gdp_md_est'] / world['pop_est']
scheme = mapclassify.Quantiles(gpd_per_person, k=5)
# Note: this code sample requires geoplot>=0.4.0.
geoplot.choropleth(
world, hue=gpd_per_person, scheme=scheme,
cmap='Greens', figsize=(8, 4)
)
###############################################################################
# If you want to use size as a visual variable, use a ``cartogram``. Here are
# population estimates for countries in Africa.
africa = world.query('continent == "Africa"')
ax = geoplot.cartogram(
africa, scale='pop_est', limits=(0.2, 1),
edgecolor='None', figsize=(7, 8)
)
geoplot.polyplot(africa, edgecolor='gray', ax=ax)
###############################################################################
# If we have data in the shape of points in space, we may generate a
# three-dimensional heatmap on it using ``kdeplot``.
ax = geoplot.kdeplot(
collisions.head(1000), clip=boroughs.geometry,
shade=True, cmap='Reds',
projection=geoplot.crs.AlbersEqualArea())
geoplot.polyplot(boroughs, ax=ax, zorder=1)
###############################################################################