Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
pytest.param(gcrs.TransverseMercator(central_longitude=45), marks=pytest.mark.xfail),
pytest.param(gcrs.TransverseMercator(central_latitude=45), marks=pytest.mark.xfail),
pytest.param(gcrs.LambertAzimuthalEqualArea(central_longitude=45), marks=pytest.mark.xfail),
gcrs.LambertAzimuthalEqualArea(central_latitude=45),
])
def test_partially_parameterized_global_projections(proj, countries):
gplt.polyplot(countries, proj)
ax = plt.gca()
ax.set_global()
return plt.gcf()
gcrs.LambertConformal(central_longitude=45, central_latitude=45),
gcrs.Orthographic(central_longitude=45, central_latitude=45),
gcrs.Stereographic(central_longitude=45, central_latitude=45),
pytest.param(
gcrs.TransverseMercator(central_longitude=45, central_latitude=45),
marks=pytest.mark.xfail
),
gcrs.LambertAzimuthalEqualArea(central_longitude=45, central_latitude=45),
])
def test_fully_parameterized_global_projections(proj, countries):
gplt.polyplot(countries, proj)
ax = plt.gca()
ax.set_global()
return plt.gcf()
gcrs.Orthographic(),
gcrs.Stereographic(),
pytest.param(gcrs.TransverseMercator(), marks=pytest.mark.xfail),
gcrs.LambertAzimuthalEqualArea(),
gcrs.WebMercator()
])
def test_basic_global_projections(proj, countries):
gplt.polyplot(countries, proj)
ax = plt.gca()
ax.set_global()
return plt.gcf()
gcrs.OSGB(),
])
def test_basic_non_global_projections(proj, countries):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
gplt.polyplot(countries, proj)
return plt.gcf()
hue='NUMBER OF PERSONS INJURED', agg=np.max, cmap='Reds',
nmin=100, nmax=500,
linewidth=0.5, edgecolor='white',
ax=axarr[0])
ax1.set_title("No Geometry (Quadtree)")
ax2 = gplt.aggplot(collisions, projection=gcrs.AlbersEqualArea(),
hue='NUMBER OF PERSONS INJURED', agg=np.max, cmap='Reds', by='ZIP CODE',
linewidth=0.5, edgecolor='white',
ax=axarr[1])
ax2.set_title("Categorical Geometry (Convex Hull)")
zip_codes = gplt.datasets.load('nyc-zip-codes')
ax3 = gplt.aggplot(collisions, projection=gcrs.AlbersEqualArea(),
hue='NUMBER OF PERSONS INJURED', agg=np.max, by='ZIP CODE', geometry=zip_codes.geometry,
cmap='Reds', linewidth=0.5, edgecolor='white',
ax=axarr[2])
ax3.set_title("Geometry Provided (Choropleth)")
plt.savefig("aggplot-collisions-1.png", bbox_inches='tight', pad_inches=0.1)
overwhelming the renderer.
`Click here to see this plot as an interactive webmap.
`_
"""
import geopandas as gpd
import geoplot as gplt
import geoplot.crs as gcrs
import matplotlib.pyplot as plt
import mplleaflet
boston_airbnb_listings = gpd.read_file(gplt.datasets.get_path('boston_airbnb_listings'))
ax = gplt.kdeplot(
boston_airbnb_listings, cmap='viridis', projection=gcrs.WebMercator(), figsize=(12, 12),
shade=True
)
gplt.pointplot(boston_airbnb_listings, s=1, color='black', ax=ax)
gplt.webmap(boston_airbnb_listings, ax=ax)
plt.title('Boston AirBnB Locations, 2016', fontsize=18)
fig = plt.gcf()
plt.savefig("boston-airbnb-kde.png", bbox_inches='tight', pad_inches=0.1)
# mplleaflet.show(fig)
africa = world.query('continent == "Africa"')
ax = geoplot.cartogram(
africa, scale='pop_est', limits=(0.2, 1),
edgecolor='None', figsize=(7, 8)
)
geoplot.polyplot(africa, edgecolor='gray', ax=ax)
###############################################################################
# If we have data in the shape of points in space, we may generate a
# three-dimensional heatmap on it using ``kdeplot``.
ax = geoplot.kdeplot(
collisions.head(1000), clip=boroughs.geometry,
shade=True, cmap='Reds',
projection=geoplot.crs.AlbersEqualArea())
geoplot.polyplot(boroughs, ax=ax, zorder=1)
###############################################################################
# Alternatively, we may partition the space into neighborhoods automatically,
# using Voronoi tessellation. This is a good way of visually verifying whether
# or not a certain data column is spatially correlated.
ax = geoplot.voronoi(
collisions.head(1000), projection=geoplot.crs.AlbersEqualArea(),
clip=boroughs.simplify(0.001),
hue='NUMBER OF PERSONS INJURED', cmap='Reds',
legend=True,
edgecolor='white'
)
geoplot.polyplot(boroughs, edgecolor='black', zorder=1, ax=ax)