Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
model.w = w_r
return model
def _test():
import doctest
start_suppress = np.get_printoptions()['suppress']
np.set_printoptions(suppress=True)
doctest.testmod()
np.set_printoptions(suppress=start_suppress)
if __name__ == '__main__':
_test()
import numpy as np
import pysal
db = pysal.open(pysal.examples.get_path('columbus.dbf'), 'r')
y_var = 'CRIME'
y = np.array([db.by_col(y_var)]).reshape(49, 1)
x_var = ['INC', 'HOVAL']
x = np.array([db.by_col(name) for name in x_var]).T
r_var = 'NSA'
regimes = db.by_col(r_var)
w = pysal.rook_from_shapefile(pysal.examples.get_path("columbus.shp"))
w.transform = 'r'
olsr = OLS_Regimes(y, x, regimes, w=w, constant_regi='many', nonspat_diag=False, spat_diag=False, name_y=y_var, name_x=['INC', 'HOVAL'],
name_ds='columbus', name_regimes=r_var, name_w='columbus.gal', regime_err_sep=True, cols2regi=[True, True], sig2n_k=True, robust='white')
print olsr.summary
def _test():
import doctest
start_suppress = np.get_printoptions()['suppress']
np.set_printoptions(suppress=True)
doctest.testmod()
np.set_printoptions(suppress=start_suppress)
if __name__ == '__main__':
_test()
import numpy as np
import pysal
dbf = pysal.open(pysal.examples.get_path('columbus.dbf'), 'r')
y = np.array([dbf.by_col('CRIME')]).T
var_x = ['INC', 'HOVAL']
x = np.array([dbf.by_col(name) for name in var_x]).T
w = pysal.open(pysal.examples.get_path("columbus.gal"), 'r').read()
w.transform = 'r'
probit1 = Probit(
(y > 40).astype(float), x, w=w, name_x=var_x, name_y="CRIME",
name_ds="Columbus", name_w="columbus.dbf")
print probit1.summary
np.set_printoptions(suppress=start_suppress)
if __name__ == "__main__":
_test()
import numpy as np
import pysal as ps
db = ps.open(ps.examples.get_path("baltim.dbf"), 'r')
ds_name = "baltim.dbf"
y_name = "PRICE"
y = np.array(db.by_col(y_name)).T
y.shape = (len(y), 1)
x_names = ["NROOM", "NBATH", "PATIO", "FIREPL",
"AC", "GAR", "AGE", "LOTSZ", "SQFT"]
x = np.array([db.by_col(var) for var in x_names]).T
ww = ps.open(ps.examples.get_path("baltim_q.gal"))
w = ww.read()
ww.close()
w_name = "baltim_q.gal"
w.transform = 'r'
regimes = []
y_coord = np.array(db.by_col("Y"))
for i in y_coord:
if i > 544.5:
regimes.append("North")
else:
regimes.append("South")
mlerror = ML_Error_Regimes(y, x, regimes, w=w, method='full', name_y=y_name,
name_x=x_names, name_w=w_name, name_ds=ds_name, regime_err_sep=False,
name_regimes="North")
start_suppress = np.get_printoptions()['suppress']
np.set_printoptions(suppress=True)
doctest.testmod()
np.set_printoptions(suppress=start_suppress)
if __name__ == '__main__':
_test()
import numpy as np
import pysal
db = pysal.open(pysal.examples.get_path("columbus.dbf"), 'r')
y_var = 'CRIME'
y = np.array([db.by_col(y_var)]).reshape(49, 1)
x_var = ['INC', 'HOVAL']
x = np.array([db.by_col(name) for name in x_var]).T
w = pysal.rook_from_shapefile(pysal.examples.get_path("columbus.shp"))
w.transform = 'r'
ols = OLS(
y, x, w=w, nonspat_diag=True, spat_diag=True, name_y=y_var, name_x=x_var,
name_ds='columbus', name_w='columbus.gal', robust='white', sig2n_k=True, moran=True)
print ols.summary
if __name__ == '__main__':
_test()
import numpy as np
import pysal
db = pysal.open(pysal.examples.get_path("columbus.dbf"), 'r')
y_var = 'CRIME'
y = np.array([db.by_col(y_var)]).reshape(49, 1)
x_var = ['INC']
x = np.array([db.by_col(name) for name in x_var]).T
yd_var = ['HOVAL']
yd = np.array([db.by_col(name) for name in yd_var]).T
q_var = ['DISCBD']
q = np.array([db.by_col(name) for name in q_var]).T
r_var = 'NSA'
regimes = db.by_col(r_var)
w = pysal.queen_from_shapefile(pysal.examples.get_path("columbus.shp"))
w.transform = 'r'
model = GM_Lag_Regimes(y, x, regimes, yend=yd, q=q, w=w, constant_regi='many', spat_diag=True, sig2n_k=False, lag_q=True, name_y=y_var,
name_x=x_var, name_yend=yd_var, name_q=q_var, name_regimes=r_var, name_ds='columbus', name_w='columbus.gal', regime_err_sep=True, robust='white')
print model.summary
'''
values = np.array(dbf.by_col("SIDR74"))
#values[: values.shape[0]/2] = 1
#values[values.shape[0]/2: ] = 0
'''
patchco = map_poly_shp(ps.open(shp_link))
#patchco = base_choropleth_classif(shp_link, np.random.random(3))
#patchco = plot_choropleth(shp_link, np.random.random(3), 'quantiles')
if data == 'point':
shp_link = ps.examples.get_path("burkitt.shp")
dbf = ps.open(shp_link.replace('.shp', '.dbf'))
patchco = map_point_shp(ps.open(shp_link))
if data == 'line':
shp_link = ps.examples.get_path("eberly_net.shp")
dbf = ps.open(shp_link.replace('.shp', '.dbf'))
values = np.array(dbf.by_col('TNODE'))
mobj = map_line_shp(ps.open(shp_link))
patchco = base_choropleth_unique(mobj, values)
'''
which = values > 1.
for shp_link in [shp_link]:
fig = plt.figure()
patchco = map_poly_shp(shp_link)
patchcoB = map_poly_shp(shp_link, which=which)
patchco.set_facecolor('none')
ax = setup_ax([patchco, patchcoB])
fig.add_axes(ax)
path = markerobj.get_path().transformed(
markerobj.get_transform())
scales = np.array([2, 2])
fig = plt.figure()
ax = fig.add_subplot(111)
pc = PathCollection((path,), scales, offsets=xy, \
facecolors='r', transOffset=mpl.transforms.IdentityTransform())
#pc.set_transform(mpl.transforms.IdentityTransform())
#_ = _add_axes2col(pc, [0, 0, 5, 5])
ax.add_collection(pc)
fig.add_axes(ax)
#ax = setup_ax([pc], ax)
plt.show()
'''
shp_link = ps.examples.get_path('columbus.shp')
values = np.array(ps.open(ps.examples.get_path('columbus.dbf')).by_col('HOVAL'))
w = ps.queen_from_shapefile(shp_link)
lisa = ps.Moran_Local(values, w, permutations=999)
_ = plot_lisa_cluster(shp_link, lisa)
#_ = plot_choropleth(shp_link, values, 'fisher_jenks')