How to use the daal.data_management.NumericTableIface function in daal

To help you get started, we’ve selected a few daal examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github intel / daal / examples / python / source / boosting / logitboost_dense_batch.py View on Github external
def testModel():
    global testGroundTruth, predictionResult

    # Initialize FileDataSource to retrieve the test data from a .csv file
    testDataSource = FileDataSource(
        testDatasetFileName,
        DataSourceIface.notAllocateNumericTable,
        DataSourceIface.doDictionaryFromContext
    )

    # Create Numeric Tables for testing data and labels
    testData = HomogenNumericTable(nFeatures, 0, NumericTableIface.doNotAllocate)
    testGroundTruth = HomogenNumericTable(1, 0, NumericTableIface.doNotAllocate)
    mergedData = MergedNumericTable(testData, testGroundTruth)

    # Retrieve the data from input file
    testDataSource.loadDataBlock(mergedData)

    # Create algorithm objects for LogitBoost prediction with the default method
    algorithm = prediction.Batch(nClasses)

    # Pass the testing data set and trained model to the algorithm
    algorithm.input.setTable(classifier.prediction.data,  testData)
    algorithm.input.setModel(classifier.prediction.model, model)

    # Compute prediction results and retrieve algorithm results
    # (Result class from classifier.prediction)
    predictionResult = algorithm.compute()
github intel / daal / examples / python / source / linear_regression / lin_reg_norm_eq_dense_batch.py View on Github external
def testModel():
    global trainingResult, predictionResult

    # Initialize FileDataSource to retrieve the test data from a .csv file
    testDataSource = FileDataSource(
        testDatasetFileName, DataSourceIface.doAllocateNumericTable,
        DataSourceIface.doDictionaryFromContext
    )

    # Create Numeric Tables for testing data and ground truth values
    testData = HomogenNumericTable(nFeatures, 0, NumericTableIface.doNotAllocate)
    testGroundTruth = HomogenNumericTable(nDependentVariables, 0, NumericTableIface.doNotAllocate)
    mergedData = MergedNumericTable(testData, testGroundTruth)

    # Load the data from the data file
    testDataSource.loadDataBlock(mergedData)

    # Create an algorithm object to predict values of multiple linear regression
    algorithm = prediction.Batch()

    # Pass a testing data set and the trained model to the algorithm
    algorithm.input.setTable(prediction.data, testData)
    algorithm.input.setModel(prediction.model, trainingResult.get(training.model))

    # Predict values of multiple linear regression and retrieve the algorithm results
    predictionResult = algorithm.compute()
    printNumericTable(predictionResult.get(prediction.prediction), "Linear Regression prediction results: (first 10 rows):", 10)
github intel / daal / examples / python / source / quality_metrics / svm_multi_class_metrics_dense_batch.py View on Github external
def testModel():
    global predictionResult, groundTruthLabels

    # Initialize FileDataSource to retrieve the test data from a .csv file
    testDataSource = FileDataSource(
        testDatasetFileName, DataSourceIface.doAllocateNumericTable,
        DataSourceIface.doDictionaryFromContext
    )

    # Create Numeric Tables for testing data and labels
    testData = HomogenNumericTable(nFeatures, 0, NumericTableIface.doNotAllocate)
    groundTruthLabels = HomogenNumericTable(1, 0, NumericTableIface.doNotAllocate)
    mergedData = MergedNumericTable(testData, groundTruthLabels)

    # Retrieve the data from input file
    testDataSource.loadDataBlock(mergedData)

    # Create an algorithm object to predict multi-class SVM values
    algorithm = multi_class_classifier.prediction.Batch(nClasses,fptype=np.float64)

    algorithm.parameter.training = training
    algorithm.parameter.prediction = prediction

    # Pass a testing data set and the trained model to the algorithm
    algorithm.input.setTable(classifier.prediction.data, testData)
    algorithm.input.setModel(classifier.prediction.model, trainingResult.get(classifier.training.model))
github intel / daal / examples / python / source / distributions / bernoulli_dense_batch.py View on Github external
import os
import sys

import daal.algorithms.distributions as distributions
import daal.algorithms.distributions.bernoulli as bernoulli
from daal.algorithms.engines.mt19937 import Batch_Float64DefaultDense_create as create
from daal.data_management import HomogenNumericTable, NumericTableIface

utils_folder = os.path.realpath(os.path.abspath(os.path.dirname(os.path.dirname(__file__))))
if utils_folder not in sys.path:
    sys.path.insert(0, utils_folder)
from utils import printNumericTable

if __name__ == "__main__":
    # Create input table to fill with random numbers
    dataTable = HomogenNumericTable(1, 10, NumericTableIface.doAllocate)

    # Create the algorithm
    bernoulli = bernoulli.Batch(0.5)

    # Set the algorithm input
    bernoulli.input.set(distributions.tableToFill, dataTable)

    # Set the Mersenne Twister engine to the distribution
    bernoulli.parameter.engine = create(777)

    # Perform computations
    bernoulli.compute()

    # Print the results
    printNumericTable(dataTable, "Bernoulli distribution output:")
github intel / daal / examples / python / source / quality_metrics / svm_two_class_metrics_dense_batch.py View on Github external
def trainModel():
    global trainingResult

    # Initialize FileDataSource to retrieve the input data from a .csv file
    trainDataSource = FileDataSource(
        trainDatasetFileName, DataSourceIface.notAllocateNumericTable,
        DataSourceIface.doDictionaryFromContext
    )

    # Create Numeric Tables for training data and labels
    trainData = HomogenNumericTable(nFeatures, 0, NumericTableIface.doNotAllocate)
    trainGroundTruth = HomogenNumericTable(1, 0, NumericTableIface.doNotAllocate)
    mergedData = MergedNumericTable(trainData, trainGroundTruth)

    # Retrieve the data from the input file
    trainDataSource.loadDataBlock(mergedData)

    # Create an algorithm object to train the SVM model
    algorithm = svm.training.Batch()

    algorithm.parameter.kernel = kernel
    algorithm.parameter.cacheSize = 600000000

    # Pass a training data set and dependent values to the algorithm
    algorithm.input.set(classifier.training.data, trainData)
    algorithm.input.set(classifier.training.labels, trainGroundTruth)

    # Build the SVM model and get the algorithm results
github intel / daal / examples / python / source / decision_tree / dt_cls_dense_batch.py View on Github external
def testModel():
    global testGroundTruth, predictionResult

    # Initialize FileDataSource to retrieve the test data from a .csv file
    testDataSource = FileDataSource(
        testDatasetFileName,
        DataSourceIface.notAllocateNumericTable,
        DataSourceIface.doDictionaryFromContext
    )

    # Create Numeric Tables for testing data and labels
    testData = HomogenNumericTable(nFeatures, 0, NumericTableIface.notAllocate)
    testGroundTruth = HomogenNumericTable(1, 0, NumericTableIface.notAllocate)
    mergedData = MergedNumericTable(testData, testGroundTruth)

    # Retrieve the data from input file
    testDataSource.loadDataBlock(mergedData)

    # Create algorithm objects for decision tree classification prediction with the default method
    algorithm = prediction.Batch()

    # Pass the testing data set and trained model to the algorithm
    #print("Number of columns: {}".format(testData.getNumberOfColumns()))
    algorithm.input.setTable(classifier.prediction.data,  testData)
    algorithm.input.setModel(classifier.prediction.model, model)

    # Compute prediction results and retrieve algorithm results
    # (Result class from classifier.prediction)
github intel / daal / examples / python / source / optimization_solvers / adagrad_opt_res_dense_batch.py View on Github external
# Retrieve the data from the input file
    dataSource.loadDataBlock(mergedData)

    nVectors = data.getNumberOfRows()

    mseObjectiveFunction = optimization_solver.mse.Batch(nVectors)
    mseObjectiveFunction.input.set(optimization_solver.mse.data, data)
    mseObjectiveFunction.input.set(optimization_solver.mse.dependentVariables, dependentVariables)

    # Create objects to compute the Adagrad result using the default method
    adagradAlgorithm = optimization_solver.adagrad.Batch(mseObjectiveFunction)

    # Set input objects for the the Adagrad algorithm
    adagradAlgorithm.input.setInput(optimization_solver.iterative_solver.inputArgument, HomogenNumericTable(startPoint))
    adagradAlgorithm.parameter.learningRate = HomogenNumericTable(1, 1, NumericTableIface.doAllocate, learningRate)
    adagradAlgorithm.parameter.nIterations = halfNIterations
    adagradAlgorithm.parameter.accuracyThreshold = accuracyThreshold
    adagradAlgorithm.parameter.batchSize = batchSize
    adagradAlgorithm.parameter.optionalResultRequired = True

    # Compute the Adagrad result
    # Result class from daal.algorithms.optimization_solver.iterative_solver
    res = adagradAlgorithm.compute()

    # Print computed the Adagrad result
    printNumericTable(res.getResult(optimization_solver.iterative_solver.minimum), "Minimum after first compute():")
    printNumericTable(res.getResult(optimization_solver.iterative_solver.nIterations), "Number of iterations performed:")

    adagradAlgorithm.input.setInput(optimization_solver.iterative_solver.inputArgument, res.getResult(optimization_solver.iterative_solver.minimum))
    adagradAlgorithm.input.setInput(optimization_solver.iterative_solver.optionalArgument, res.getResult(optimization_solver.iterative_solver.optionalResult))
github intel / daal / examples / python / source / stump / stump_dense_batch.py View on Github external
def trainModel():
    global trainingResult
    # Initialize FileDataSource to retrieve the input data from a .csv file
    trainDataSource = FileDataSource(
        trainDatasetFileName,
        DataSourceIface.notAllocateNumericTable,
        DataSourceIface.doDictionaryFromContext
    )

    # Create Numeric Tables for training data and labels
    trainData = HomogenNumericTable(nFeatures, 0, NumericTableIface.doNotAllocate)
    trainGroundTruth = HomogenNumericTable(1, 0, NumericTableIface.doNotAllocate)
    mergedData = MergedNumericTable(trainData, trainGroundTruth)

    # Retrieve the data from the input file
    trainDataSource.loadDataBlock(mergedData)

    #  Create an algorithm object to train the stump model
    algorithm = training.Batch()

    #  Pass a training data set and dependent values to the algorithm
    algorithm.input.set(classifier.training.data, trainData)
    algorithm.input.set(classifier.training.labels, trainGroundTruth)

    #  Compute and retrieve the algorithm results
    trainingResult = algorithm.compute()
github intel / daal / examples / python / source / k_nearest_neighbors / kdtree_knn_dense_batch.py View on Github external
def testModel():
    global trainingResult, predictionResult

    # Initialize FileDataSource to retrieve the test data from a .csv file
    testDataSource = FileDataSource(
        testDatasetFileName, DataSourceIface.doAllocateNumericTable,
        DataSourceIface.doDictionaryFromContext
    )

    # Create Numeric Tables for testing data and ground truth values
    testData = HomogenNumericTable(nFeatures, 0, NumericTableIface.doNotAllocate)
    testGroundTruth = HomogenNumericTable(1, 0, NumericTableIface.doNotAllocate)
    mergedData = MergedNumericTable(testData, testGroundTruth)

    # Load the data from the data file
    testDataSource.loadDataBlock(mergedData)

    # Create algorithm objects for KD-tree based kNN prediction with the default method
    algorithm = prediction.Batch()

    # Pass the testing data set and trained model to the algorithm
    algorithm.input.setTable(classifier.prediction.data,  testData)
    algorithm.input.setModel(classifier.prediction.model, trainingResult.get(classifier.training.model))

    # Compute prediction results
    predictionResult = algorithm.compute()
    printNumericTables(
        testGroundTruth, predictionResult.get(classifier.prediction.prediction),
github intel / daal / examples / python / source / datasource / basic_statistics.py View on Github external
# Input data set parameters
    datasetFileName = "../data/batch/basic_statistics.csv"
    data = np.array([(7.0, 3.0, 6.0, 2.0),
                     (1.0, 3.0, 0.0, 2.0),
                     (9.0, 2.0, 6.0, 2.0),
                     (3.0, 4.0, 7.0, 2.0),])

    # Initialize FileDataSource to retrieve the input data from a .csv file
    dataSource = FileDataSource(datasetFileName, DataSourceIface.doAllocateNumericTable)

    dataSource.createDictionaryFromContext()
    dataSource.loadDataBlock()
    table = dataSource.getNumericTable()

    # Get basic statistics from the table. They were calculated inside DataSource for each column.
    min = table.basicStatistics.get(NumericTableIface.minimum)
    max = table.basicStatistics.get(NumericTableIface.maximum)
    sum = table.basicStatistics.get(NumericTableIface.sum)
    sumSquares = table.basicStatistics.get(NumericTableIface.sumSquares)

    # Print calculated basic statistics
    printNumericTable(table,      "Basic statistics of table:")
    printNumericTable(min,        "Minimum:")
    printNumericTable(max,        "Maximum:")
    printNumericTable(sum,        "Sum:")
    printNumericTable(sumSquares, "SumSquares:")

    # Create NumericTable with the same data. But in this case basic statistics are not calculated.
    dataTable = HomogenNumericTable(data)

    # Set basic statistics in the new NumericTable
    dataTable.basicStatistics.set(NumericTableIface.minimum, min);