Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
DAAL_PREFIX = os.path.join('..', 'data')
# Input data set parameters
datasetFileName = os.path.join(DAAL_PREFIX, 'batch', 'kmeans_dense.csv')
# K-Means algorithm parameters
nClusters = 20
nIterations = 5
if __name__ == "__main__":
# Initialize FileDataSource to retrieve the input data from a .csv file
dataSource = FileDataSource(
datasetFileName,
DataSourceIface.doAllocateNumericTable,
DataSourceIface.doDictionaryFromContext
)
# Retrieve the data from the input file
dataSource.loadDataBlock()
# Get initial clusters for the K-Means algorithm
initAlg = kmeans.init.Batch(nClusters, method=kmeans.init.randomDense)
initAlg.input.set(kmeans.init.data, dataSource.getNumericTable())
res = initAlg.compute()
centroidsResult = res.get(kmeans.init.centroids)
# Create an algorithm object for the K-Means algorithm
algorithm = kmeans.Batch(nClusters, nIterations, method=kmeans.lloydDense)
def computestep1Local(block):
global dataFromStep1ForStep2, dataFromStep1ForStep3
# Initialize FileDataSource to retrieve the input data from a .csv file
dataSource = FileDataSource(
datasetFileNames[block],
DataSourceIface.doAllocateNumericTable,
DataSourceIface.doDictionaryFromContext
)
# Retrieve the input data
dataSource.loadDataBlock()
# Create an algorithm to compute SVD on the local node
algorithm = svd.Distributed(step1Local,fptype=np.float64)
algorithm.input.set(svd.data, dataSource.getNumericTable())
# Compute SVD and get OnlinePartialResult class from daal.algorithms.svd
pres = algorithm.compute()
dataFromStep1ForStep2[block] = pres.get(svd.outputOfStep1ForStep2)
dataFromStep1ForStep3[block] = pres.get(svd.outputOfStep1ForStep3)
if utils_folder not in sys.path:
sys.path.insert(0, utils_folder)
from utils import printNumericTable
DAAL_PREFIX = os.path.join('..', 'data')
# Input data set parameters
nRowsInBlock = 4000
dataFileName = os.path.join(DAAL_PREFIX, 'batch', 'svd.csv')
if __name__ == "__main__":
# Initialize FileDataSource to retrieve input data from .csv file
dataSource = FileDataSource(
dataFileName,
DataSourceIface.doAllocateNumericTable,
DataSourceIface.doDictionaryFromContext
)
# Create algorithm object to compute SVD decomposition in online mode
algorithm = svd.Online(fptype=np.float64)
while dataSource.loadDataBlock(nRowsInBlock):
# Set input arguments of the algorithm
algorithm.input.set(svd.data, dataSource.getNumericTable())
# Compute partial SVD decomposition estimates
algorithm.compute()
# Finalize online result and get computed SVD decomposition
res = algorithm.finalizeCompute()
def trainModel(comm, rankId):
trainingResult = None
# Initialize FileDataSource to retrieve the input data from a .csv file
trainDataSource = FileDataSource(
trainDatasetFileNames[rankId],
DataSourceIface.notAllocateNumericTable,
DataSourceIface.doDictionaryFromContext
)
# Create Numeric Tables for training data and labels
trainData = HomogenNumericTable(NUM_FEATURES, 0, NumericTableIface.doNotAllocate)
trainDependentVariables = HomogenNumericTable(NUM_DEPENDENT_VARS, 0, NumericTableIface.doNotAllocate)
mergedData = MergedNumericTable(trainData, trainDependentVariables)
# Retrieve the data from the input file
trainDataSource.loadDataBlock(mergedData)
# Create an algorithm object to train the ridge regression model based on the local-node data
localAlgorithm = training.Distributed(step1Local)
# Pass a training data set and dependent values to the algorithm
localAlgorithm.input.set(training.data, trainData)
from utils import printNumericTable
datasetFileName = os.path.join('..', 'data', 'batch', 'mse.csv')
nFeatures = 3
accuracyThreshold = 0.0000001
nIterations = 1000
batchSize = 4
learningRate = 0.5
initialPoint = np.array([[8], [2], [1], [4]], dtype=np.float64)
if __name__ == "__main__":
# Initialize FileDataSource to retrieve the input data from a .csv file
dataSource = FileDataSource(datasetFileName,
DataSourceIface.notAllocateNumericTable,
DataSourceIface.doDictionaryFromContext)
# Create Numeric Tables for data and values for dependent variable
data = HomogenNumericTable(nFeatures, 0, NumericTableIface.doNotAllocate)
dependentVariables = HomogenNumericTable(1, 0, NumericTableIface.doNotAllocate)
mergedData = MergedNumericTable(data, dependentVariables)
# Retrieve the data from the input file
dataSource.loadDataBlock(mergedData)
nVectors = data.getNumberOfRows()
mseObjectiveFunction = optimization_solver.mse.Batch(nVectors)
mseObjectiveFunction.input.set(optimization_solver.mse.data, data)
mseObjectiveFunction.input.set(optimization_solver.mse.dependentVariables, dependentVariables)
def testModel():
global trainingResult, predictionResult
# Initialize FileDataSource to retrieve the input data from a .csv file
testDataSource = FileDataSource(
testDatasetFileName, DataSourceIface.doAllocateNumericTable,
DataSourceIface.doDictionaryFromContext
)
# Create Numeric Tables for testing data and ground truth values
testData = HomogenNumericTable(nFeatures, 0, NumericTableIface.doNotAllocate)
testGroundTruth = HomogenNumericTable(nDependentVariables, 0, NumericTableIface.doNotAllocate)
mergedData = MergedNumericTable(testData, testGroundTruth)
# Retrieve the data from the input file
testDataSource.loadDataBlock(mergedData)
# Create an algorithm object to predict values of multiple linear regression
algorithm = prediction.Batch()
# Pass a testing data set and the trained model to the algorithm
algorithm.input.setTable(prediction.data, testData)
algorithm.input.setModel(prediction.model, trainingResult.get(training.model))
def trainModel():
global model
# Initialize FileDataSource to retrieve the input data from a .csv file
trainDataSource = FileDataSource(
trainDatasetFileName,
DataSourceIface.notAllocateNumericTable,
DataSourceIface.doDictionaryFromContext
)
# Create Numeric Tables for training data and labels
trainData = HomogenNumericTable(nFeatures, 0, NumericTableIface.notAllocate)
trainGroundTruth = HomogenNumericTable(1, 0, NumericTableIface.notAllocate)
mergedData = MergedNumericTable(trainData, trainGroundTruth)
# Retrieve the data from the input file
trainDataSource.loadDataBlock(mergedData)
# Get the dictionary and update it with additional information about data
dict = trainData.getDictionary()
# Add a feature type to the dictionary
dict[3].featureType = features.DAAL_CATEGORICAL
def trainModel():
global trainingResult
# Initialize FileDataSource to retrieve the input data from a .csv file
trainDataSource = FileDataSource(
trainDatasetFileName,
DataSourceIface.notAllocateNumericTable,
DataSourceIface.doDictionaryFromContext
)
# Create Numeric Tables for training data and labels
trainData = HomogenNumericTable(nFeatures, 0, NumericTableIface.doNotAllocate)
trainGroundTruth = HomogenNumericTable(1, 0, NumericTableIface.doNotAllocate)
mergedData = MergedNumericTable(trainData, trainGroundTruth)
# Retrieve the data from the input file
trainDataSource.loadDataBlock(mergedData)
# Create an algorithm object to train the multi-class SVM model
algorithm = multi_class_classifier.training.Batch(nClasses)
algorithm.parameter.training = trainingBatch
algorithm.parameter.prediction = predictionBatch