Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
bn4a_branch2a = batch_normalization.Batch(fptype=np.float32)
bn4a_branch2a_id = topology.add(bn4a_branch2a)
res4a_branch2a_relu = relu.Batch(fptype=np.float32)
res4a_branch2a_relu_id = topology.add(res4a_branch2a_relu)
res4a_branch2b = convolution2d.Batch(fptype=np.float32)
res4a_branch2b.parameter.nKernels = 256
res4a_branch2b.parameter.kernelSizes = convolution2d.KernelSizes(3, 3)
res4a_branch2b.parameter.strides = convolution2d.Strides(1, 1)
res4a_branch2b.parameter.paddings = convolution2d.Paddings(1, 1)
res4a_branch2b.parameter.weightsInitializer = xavier.Batch(fptype=np.float32)
res4a_branch2b.parameter.biasesInitializer = uniform.Batch(0, 0, fptype=np.float32)
res4a_branch2b_id = topology.add(res4a_branch2b)
bn4a_branch2b = batch_normalization.Batch(fptype=np.float32)
bn4a_branch2b_id = topology.add(bn4a_branch2b)
res4a_branch2b_relu = relu.Batch(fptype=np.float32)
res4a_branch2b_relu_id = topology.add(res4a_branch2b_relu)
res4a_branch2c = convolution2d.Batch(fptype=np.float32)
res4a_branch2c.parameter.nKernels = 1024
res4a_branch2c.parameter.kernelSizes = convolution2d.KernelSizes(1, 1)
res4a_branch2c.parameter.strides = convolution2d.Strides(1, 1)
res4a_branch2c.parameter.weightsInitializer = xavier.Batch(fptype=np.float32)
res4a_branch2c.parameter.biasesInitializer = uniform.Batch(0, 0, fptype=np.float32)
res4a_branch2c_id = topology.add(res4a_branch2c)
bn4a_branch2c = batch_normalization.Batch(fptype=np.float32)
bn4a_branch2c_id = topology.add(bn4a_branch2c)
bn4d_branch2a = batch_normalization.Batch(fptype=np.float32)
bn4d_branch2a_id = topology.add(bn4d_branch2a)
res4d_branch2a_relu = relu.Batch(fptype=np.float32)
res4d_branch2a_relu_id = topology.add(res4d_branch2a_relu)
res4d_branch2b = convolution2d.Batch(fptype=np.float32)
res4d_branch2b.parameter.nKernels = 256
res4d_branch2b.parameter.kernelSizes = convolution2d.KernelSizes(3, 3)
res4d_branch2b.parameter.strides = convolution2d.Strides(1, 1)
res4d_branch2b.parameter.paddings = convolution2d.Paddings(1, 1)
res4d_branch2b.parameter.weightsInitializer = xavier.Batch(fptype=np.float32)
res4d_branch2b.parameter.biasesInitializer = uniform.Batch(0, 0, fptype=np.float32)
res4d_branch2b_id = topology.add(res4d_branch2b)
bn4d_branch2b = batch_normalization.Batch(fptype=np.float32)
bn4d_branch2b_id = topology.add(bn4d_branch2b)
res4d_branch2b_relu = relu.Batch(fptype=np.float32)
res4d_branch2b_relu_id = topology.add(res4d_branch2b_relu)
res4d_branch2c = convolution2d.Batch(fptype=np.float32)
res4d_branch2c.parameter.nKernels = 1024
res4d_branch2c.parameter.kernelSizes = convolution2d.KernelSizes(1, 1)
res4d_branch2c.parameter.strides = convolution2d.Strides(1, 1)
res4d_branch2c.parameter.weightsInitializer = xavier.Batch(fptype=np.float32)
res4d_branch2c.parameter.biasesInitializer = uniform.Batch(0, 0, fptype=np.float32)
res4d_branch2c_id = topology.add(res4d_branch2c)
bn4d_branch2c = batch_normalization.Batch(fptype=np.float32)
bn4d_branch2c_id = topology.add(bn4d_branch2c)
res3c_relu = relu.Batch(fptype=np.float32)
res3c_relu_id = topology.add(res3c_relu)
res3c_relu_split7 = split.Batch(2, 2, fptype=np.float32)
res3c_relu_split7_id = topology.add(res3c_relu_split7)
res3d_branch2a = convolution2d.Batch(fptype=np.float32)
res3d_branch2a.parameter.nKernels = 128
res3d_branch2a.parameter.kernelSizes = convolution2d.KernelSizes(1, 1)
res3d_branch2a.parameter.strides = convolution2d.Strides(1, 1)
res3d_branch2a.parameter.weightsInitializer = xavier.Batch(fptype=np.float32)
res3d_branch2a.parameter.biasesInitializer = uniform.Batch(0, 0, fptype=np.float32)
res3d_branch2a_id = topology.add(res3d_branch2a)
bn3d_branch2a = batch_normalization.Batch(fptype=np.float32)
bn3d_branch2a_id = topology.add(bn3d_branch2a)
res3d_branch2a_relu = relu.Batch(fptype=np.float32)
res3d_branch2a_relu_id = topology.add(res3d_branch2a_relu)
res3d_branch2b = convolution2d.Batch(fptype=np.float32)
res3d_branch2b.parameter.nKernels = 128
res3d_branch2b.parameter.kernelSizes = convolution2d.KernelSizes(3, 3)
res3d_branch2b.parameter.strides = convolution2d.Strides(1, 1)
res3d_branch2b.parameter.paddings = convolution2d.Paddings(1, 1)
res3d_branch2b.parameter.weightsInitializer = xavier.Batch(fptype=np.float32)
res3d_branch2b.parameter.biasesInitializer = uniform.Batch(0, 0, fptype=np.float32)
res3d_branch2b_id = topology.add(res3d_branch2b)
bn3d_branch2b = batch_normalization.Batch(fptype=np.float32)
bn3d_branch2b_id = topology.add(bn3d_branch2b)
bn4e_branch2a = batch_normalization.Batch(fptype=np.float32)
bn4e_branch2a_id = topology.add(bn4e_branch2a)
res4e_branch2a_relu = relu.Batch(fptype=np.float32)
res4e_branch2a_relu_id = topology.add(res4e_branch2a_relu)
res4e_branch2b = convolution2d.Batch(fptype=np.float32)
res4e_branch2b.parameter.nKernels = 256
res4e_branch2b.parameter.kernelSizes = convolution2d.KernelSizes(3, 3)
res4e_branch2b.parameter.strides = convolution2d.Strides(1, 1)
res4e_branch2b.parameter.paddings = convolution2d.Paddings(1, 1)
res4e_branch2b.parameter.weightsInitializer = xavier.Batch(fptype=np.float32)
res4e_branch2b.parameter.biasesInitializer = uniform.Batch(0, 0, fptype=np.float32)
res4e_branch2b_id = topology.add(res4e_branch2b)
bn4e_branch2b = batch_normalization.Batch(fptype=np.float32)
bn4e_branch2b_id = topology.add(bn4e_branch2b)
res4e_branch2b_relu = relu.Batch(fptype=np.float32)
res4e_branch2b_relu_id = topology.add(res4e_branch2b_relu)
res4e_branch2c = convolution2d.Batch(fptype=np.float32)
res4e_branch2c.parameter.nKernels = 1024
res4e_branch2c.parameter.kernelSizes = convolution2d.KernelSizes(1, 1)
res4e_branch2c.parameter.strides = convolution2d.Strides(1, 1)
res4e_branch2c.parameter.weightsInitializer = xavier.Batch(fptype=np.float32)
res4e_branch2c.parameter.biasesInitializer = uniform.Batch(0, 0, fptype=np.float32)
res4e_branch2c_id = topology.add(res4e_branch2c)
bn4e_branch2c = batch_normalization.Batch(fptype=np.float32)
bn4e_branch2c_id = topology.add(bn4e_branch2c)
res4e_relu = relu.Batch(fptype=np.float32)
res4e_relu_id = topology.add(res4e_relu)
res4e_relu_split13 = split.Batch(2, 2, fptype=np.float32)
res4e_relu_split13_id = topology.add(res4e_relu_split13)
res4f_branch2a = convolution2d.Batch(fptype=np.float32)
res4f_branch2a.parameter.nKernels = 256
res4f_branch2a.parameter.kernelSizes = convolution2d.KernelSizes(1, 1)
res4f_branch2a.parameter.strides = convolution2d.Strides(1, 1)
res4f_branch2a.parameter.weightsInitializer = xavier.Batch(fptype=np.float32)
res4f_branch2a.parameter.biasesInitializer = uniform.Batch(0, 0, fptype=np.float32)
res4f_branch2a_id = topology.add(res4f_branch2a)
bn4f_branch2a = batch_normalization.Batch(fptype=np.float32)
bn4f_branch2a_id = topology.add(bn4f_branch2a)
res4f_branch2a_relu = relu.Batch(fptype=np.float32)
res4f_branch2a_relu_id = topology.add(res4f_branch2a_relu)
res4f_branch2b = convolution2d.Batch(fptype=np.float32)
res4f_branch2b.parameter.nKernels = 256
res4f_branch2b.parameter.kernelSizes = convolution2d.KernelSizes(3, 3)
res4f_branch2b.parameter.strides = convolution2d.Strides(1, 1)
res4f_branch2b.parameter.paddings = convolution2d.Paddings(1, 1)
res4f_branch2b.parameter.weightsInitializer = xavier.Batch(fptype=np.float32)
res4f_branch2b.parameter.biasesInitializer = uniform.Batch(0, 0, fptype=np.float32)
res4f_branch2b_id = topology.add(res4f_branch2b)
bn4f_branch2b = batch_normalization.Batch(fptype=np.float32)
bn4f_branch2b_id = topology.add(bn4f_branch2b)
bn5a_branch2a = batch_normalization.Batch(fptype=np.float32)
bn5a_branch2a_id = topology.add(bn5a_branch2a)
res5a_branch2a_relu = relu.Batch(fptype=np.float32)
res5a_branch2a_relu_id = topology.add(res5a_branch2a_relu)
res5a_branch2b = convolution2d.Batch(fptype=np.float32)
res5a_branch2b.parameter.nKernels = 512
res5a_branch2b.parameter.kernelSizes = convolution2d.KernelSizes(3, 3)
res5a_branch2b.parameter.strides = convolution2d.Strides(1, 1)
res5a_branch2b.parameter.paddings = convolution2d.Paddings(1, 1)
res5a_branch2b.parameter.weightsInitializer = xavier.Batch(fptype=np.float32)
res5a_branch2b.parameter.biasesInitializer = uniform.Batch(0, 0, fptype=np.float32)
res5a_branch2b_id = topology.add(res5a_branch2b)
bn5a_branch2b = batch_normalization.Batch(fptype=np.float32)
bn5a_branch2b_id = topology.add(bn5a_branch2b)
res5a_branch2b_relu = relu.Batch(fptype=np.float32)
res5a_branch2b_relu_id = topology.add(res5a_branch2b_relu)
res5a_branch2c = convolution2d.Batch(fptype=np.float32)
res5a_branch2c.parameter.nKernels = 2048
res5a_branch2c.parameter.kernelSizes = convolution2d.KernelSizes(1, 1)
res5a_branch2c.parameter.strides = convolution2d.Strides(1, 1)
res5a_branch2c.parameter.weightsInitializer = xavier.Batch(fptype=np.float32)
res5a_branch2c.parameter.biasesInitializer = uniform.Batch(0, 0, fptype=np.float32)
res5a_branch2c_id = topology.add(res5a_branch2c)
bn5a_branch2c = batch_normalization.Batch(fptype=np.float32)
bn5a_branch2c_id = topology.add(bn5a_branch2c)
res4a_relu = relu.Batch(fptype=np.float32)
res4a_relu_id = topology.add(res4a_relu)
res4a_relu_split9 = split.Batch(2, 2, fptype=np.float32)
res4a_relu_split9_id = topology.add(res4a_relu_split9)
res4b_branch2a = convolution2d.Batch(fptype=np.float32)
res4b_branch2a.parameter.nKernels = 256
res4b_branch2a.parameter.kernelSizes = convolution2d.KernelSizes(1, 1)
res4b_branch2a.parameter.strides = convolution2d.Strides(1, 1)
res4b_branch2a.parameter.weightsInitializer = xavier.Batch(fptype=np.float32)
res4b_branch2a.parameter.biasesInitializer = uniform.Batch(0, 0, fptype=np.float32)
res4b_branch2a_id = topology.add(res4b_branch2a)
bn4b_branch2a = batch_normalization.Batch(fptype=np.float32)
bn4b_branch2a_id = topology.add(bn4b_branch2a)
res4b_branch2a_relu = relu.Batch(fptype=np.float32)
res4b_branch2a_relu_id = topology.add(res4b_branch2a_relu)
res4b_branch2b = convolution2d.Batch(fptype=np.float32)
res4b_branch2b.parameter.nKernels = 256
res4b_branch2b.parameter.kernelSizes = convolution2d.KernelSizes(3, 3)
res4b_branch2b.parameter.strides = convolution2d.Strides(1, 1)
res4b_branch2b.parameter.paddings = convolution2d.Paddings(1, 1)
res4b_branch2b.parameter.weightsInitializer = xavier.Batch(fptype=np.float32)
res4b_branch2b.parameter.biasesInitializer = uniform.Batch(0, 0, fptype=np.float32)
res4b_branch2b_id = topology.add(res4b_branch2b)
bn4b_branch2b = batch_normalization.Batch(fptype=np.float32)
bn4b_branch2b_id = topology.add(bn4b_branch2b)
res5a_relu = relu.Batch(fptype=np.float32)
res5a_relu_id = topology.add(res5a_relu)
res5a_relu_split15 = split.Batch(2, 2, fptype=np.float32)
res5a_relu_split15_id = topology.add(res5a_relu_split15)
res5b_branch2a = convolution2d.Batch(fptype=np.float32)
res5b_branch2a.parameter.nKernels = 512
res5b_branch2a.parameter.kernelSizes = convolution2d.KernelSizes(1, 1)
res5b_branch2a.parameter.strides = convolution2d.Strides(1, 1)
res5b_branch2a.parameter.weightsInitializer = xavier.Batch(fptype=np.float32)
res5b_branch2a.parameter.biasesInitializer = uniform.Batch(0, 0, fptype=np.float32)
res5b_branch2a_id = topology.add(res5b_branch2a)
bn5b_branch2a = batch_normalization.Batch(fptype=np.float32)
bn5b_branch2a_id = topology.add(bn5b_branch2a)
res5b_branch2a_relu = relu.Batch(fptype=np.float32)
res5b_branch2a_relu_id = topology.add(res5b_branch2a_relu)
res5b_branch2b = convolution2d.Batch(fptype=np.float32)
res5b_branch2b.parameter.nKernels = 512
res5b_branch2b.parameter.kernelSizes = convolution2d.KernelSizes(3, 3)
res5b_branch2b.parameter.strides = convolution2d.Strides(1, 1)
res5b_branch2b.parameter.paddings = convolution2d.Paddings(1, 1)
res5b_branch2b.parameter.weightsInitializer = xavier.Batch(fptype=np.float32)
res5b_branch2b.parameter.biasesInitializer = uniform.Batch(0, 0, fptype=np.float32)
res5b_branch2b_id = topology.add(res5b_branch2b)
bn5b_branch2b = batch_normalization.Batch(fptype=np.float32)
bn5b_branch2b_id = topology.add(bn5b_branch2b)
bn3a_branch2a = batch_normalization.Batch(fptype=np.float32)
bn3a_branch2a_id = topology.add(bn3a_branch2a)
res3a_branch2a_relu = relu.Batch(fptype=np.float32)
res3a_branch2a_relu_id = topology.add(res3a_branch2a_relu)
res3a_branch2b = convolution2d.Batch(fptype=np.float32)
res3a_branch2b.parameter.nKernels = 128
res3a_branch2b.parameter.kernelSizes = convolution2d.KernelSizes(3, 3)
res3a_branch2b.parameter.strides = convolution2d.Strides(1, 1)
res3a_branch2b.parameter.paddings = convolution2d.Paddings(1, 1)
res3a_branch2b.parameter.weightsInitializer = xavier.Batch(fptype=np.float32)
res3a_branch2b.parameter.biasesInitializer = uniform.Batch(0, 0, fptype=np.float32)
res3a_branch2b_id = topology.add(res3a_branch2b)
bn3a_branch2b = batch_normalization.Batch(fptype=np.float32)
bn3a_branch2b_id = topology.add(bn3a_branch2b)
res3a_branch2b_relu = relu.Batch(fptype=np.float32)
res3a_branch2b_relu_id = topology.add(res3a_branch2b_relu)
res3a_branch2c = convolution2d.Batch(fptype=np.float32)
res3a_branch2c.parameter.nKernels = 512
res3a_branch2c.parameter.kernelSizes = convolution2d.KernelSizes(1, 1)
res3a_branch2c.parameter.strides = convolution2d.Strides(1, 1)
res3a_branch2c.parameter.weightsInitializer = xavier.Batch(fptype=np.float32)
res3a_branch2c.parameter.biasesInitializer = uniform.Batch(0, 0, fptype=np.float32)
res3a_branch2c_id = topology.add(res3a_branch2c)
bn3a_branch2c = batch_normalization.Batch(fptype=np.float32)
bn3a_branch2c_id = topology.add(bn3a_branch2c)
pool1.parameter.kernelSizes = pooling2d.KernelSizes(3, 3)
pool1.parameter.strides = pooling2d.Strides(2, 2)
pool1_id = topology.add(pool1)
pool1_split1 = split.Batch(2, 2, fptype=np.float32)
pool1_split1_id = topology.add(pool1_split1)
res2a_branch1 = convolution2d.Batch(fptype=np.float32)
res2a_branch1.parameter.nKernels = 256
res2a_branch1.parameter.kernelSizes = convolution2d.KernelSizes(1, 1)
res2a_branch1.parameter.strides = convolution2d.Strides(1, 1)
res2a_branch1.parameter.weightsInitializer = xavier.Batch(fptype=np.float32)
res2a_branch1.parameter.biasesInitializer = uniform.Batch(0, 0, fptype=np.float32)
res2a_branch1_id = topology.add(res2a_branch1)
bn2a_branch1 = batch_normalization.Batch(fptype=np.float32)
bn2a_branch1_id = topology.add(bn2a_branch1)
res2a_branch2a = convolution2d.Batch(fptype=np.float32)
res2a_branch2a.parameter.nKernels = 64
res2a_branch2a.parameter.kernelSizes = convolution2d.KernelSizes(1, 1)
res2a_branch2a.parameter.strides = convolution2d.Strides(1, 1)
res2a_branch2a.parameter.weightsInitializer = xavier.Batch(fptype=np.float32)
res2a_branch2a.parameter.biasesInitializer = uniform.Batch(0, 0, fptype=np.float32)
res2a_branch2a_id = topology.add(res2a_branch2a)
bn2a_branch2a = batch_normalization.Batch(fptype=np.float32)
bn2a_branch2a_id = topology.add(bn2a_branch2a)
res2a_branch2a_relu = relu.Batch(fptype=np.float32)
res2a_branch2a_relu_id = topology.add(res2a_branch2a_relu)