Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
ELBO = log_px - kl_divergence
# https://arxiv.org/abs/1604.08772 Section.2
# https://www.reddit.com/r/MachineLearning/comments/56m5o2/discussion_calculation_of_bitsdims/
bits_per_pixel = -(ELBO / num_pixels_per_batch - np.log(256)) / np.log(
2)
return ELBO, bits_per_pixel, negative_log_likelihood, kl_divergence
#==============================================================================
# Training iterations
#==============================================================================
dataset_size = len(dataset_train)
random.seed(0)
np.random.seed(0)
cp.random.seed(0)
for epoch in range(meter_train.epoch, args.epochs):
_print("Epoch {}/{}:".format(
epoch + 1,
args.epochs,
))
meter_train.next_epoch()
subset_indices = list(range(len(dataset_train.subset_filenames)))
subset_size_per_gpu = len(subset_indices) // comm.size
if len(subset_indices) % comm.size != 0:
subset_size_per_gpu += 1
for subset_loop in range(subset_size_per_gpu):
random.shuffle(subset_indices)
subset_index = subset_indices[comm.rank]
def setup_method(self, method):
N = 16
Nc = 3
Nd = 5
M = 4
K = 3
cp.random.seed(12345)
self.D0 = cp.random.randn(Nd, Nd, Nc, M)
self.S = cp.random.randn(N, N, Nc, K)
def setup_method(self, method):
cp.random.seed(12345)
self.D = cp.random.randn(16, 15)
def setup_method(self, method):
cp.random.seed(12345)
def main():
"""
Run training/evaluation
"""
script_start = time.time()
hvd_init()
mpi_comm = MPI.COMM_WORLD
args = parse_args()
if hvd.rank() == 0:
log_args(args)
if args.seed is not None:
tf.random.set_random_seed(args.seed)
np.random.seed(args.seed)
cp.random.seed(args.seed)
if args.amp:
os.environ["TF_ENABLE_AUTO_MIXED_PRECISION"] = "1"
if "TF_ENABLE_AUTO_MIXED_PRECISION" in os.environ \
and os.environ["TF_ENABLE_AUTO_MIXED_PRECISION"] == "1":
args.fp16 = False
# directory to store/read final checkpoint
if args.mode == 'train' and hvd.rank() == 0:
print("Saving best checkpoint to {}".format(args.checkpoint_dir))
elif hvd.rank() == 0:
print("Reading checkpoint: {}".format(args.checkpoint_dir))
if not os.path.exists(args.checkpoint_dir) and args.checkpoint_dir != '':
os.makedirs(args.checkpoint_dir, exist_ok=True)
final_checkpoint_path = os.path.join(args.checkpoint_dir, 'model.ckpt')
# arguments
parser = argparse.ArgumentParser()
parser.add_argument('-eid', '--experiment_id', type=str)
parser.add_argument('-d', '--directory', type=str, default=DIRECTORY)
parser.add_argument('-i', '--input_image', type=str)
parser.add_argument('-oi', '--output_image', type=str)
parser.add_argument('-oo', '--output_obj', type=str)
parser.add_argument('-s', '--seed', type=int, default=RANDOM_SEED)
parser.add_argument('-g', '--gpu', type=int, default=GPU)
args = parser.parse_args()
directory_output = os.path.join(args.directory, args.experiment_id)
# set random seed, gpu
random.seed(args.seed)
np.random.seed(args.seed)
cp.random.seed(args.seed)
chainer.cuda.get_device(args.gpu).use()
# load dataset
image_in = skimage.io.imread(args.input_image).astype('float32') / 255
if image_in.ndim != 3 or image_in.shape[-1] != 4:
raise Exception('Input must be a RGBA image.')
images_in = image_in.transpose((2, 0, 1))[None, :, :, :]
images_in = chainer.cuda.to_gpu(images_in)
# setup model & optimizer
model = models.Model()
model.to_gpu()
chainer.serializers.load_npz(os.path.join(directory_output, 'model.npz'), model)
# reconstruct .obj
vertices, faces = model.reconstruct(images_in)
def main():
np.random.seed(0)
try:
import cupy
cupy.random.seed(0)
except Exception:
pass
option2id, all_guesses = load_quizbowl()
train_iter = QuestionIterator(all_guesses[c.BUZZER_TRAIN_FOLD], option2id,
batch_size=128, make_vector=dense_vector)
dev_iter = QuestionIterator(all_guesses[c.BUZZER_DEV_FOLD], option2id,
batch_size=128, make_vector=dense_vector)
expo_iter = QuestionIterator(all_guesses['expo'], option2id,
batch_size=128, make_vector=dense_vector)
n_hidden = 300
model_name = 'neo_1'
model_dir = 'output/buzzer/neo/{}.npz'.format(model_name)
model = RNN(train_iter.n_input, n_hidden, N_GUESSERS + 1)
import random
random.seed = seed
if "torch" in sys.modules and "TORCH" in get_backends():
import torch
torch.random.manual_seed(seed)
elif "tensorflow" in sys.modules and "TF" in get_backends():
import tensorflow as tf
tf.random.set_random_seed(seed)
elif "chainer" in sys.modules and "CHAINER" in get_backends():
try:
import cupy
cupy.random.seed(seed)
except ImportError:
pass
def generate_chunk(i_chunk, local_size, num_chunks, chunk_type, frac_match):
# Setting a seed that triggers max amount of comm in the two-GPU case.
cupy.random.seed(17561648246761420848)
chunk_type = chunk_type or "build"
frac_match = frac_match or 1.0
if chunk_type == "build":
# Build dataframe
#
# "key" column is a unique sample within [0, local_size * num_chunks)
#
# "shuffle" column is a random selection of partitions (used for shuffle)
#
# "payload" column is a random permutation of the chunk_size
start = local_size * i_chunk
stop = start + local_size
parts_array = cupy.arange(num_chunks, dtype="int64")
config = easydict.EasyDict(yaml.load(f))
shutil.copy(cfgpath, osp.join(out, 'train.yaml'))
min_size = config.min_size
max_size = config.max_size
random_seed = config.random_seed
max_epoch = config.max_epoch
lr = config.lr
cooldown_epoch = config.cooldown_epoch
lr = config.lr
lr_cooldown_factor = config.lr_cooldown_factor
# set random seed
np.random.seed(random_seed)
cp.random.seed(random_seed)
# dataset
if config.use_sbd:
dataset_class = SBDInstanceSegmentationDataset
else:
dataset_class = VOCInstanceSegmentationDataset
train_dataset = dataset_class(split='train')
test_dataset = dataset_class(split='val')
train_dataset.aspect_grouping()
# model
n_class = len(voc_label_names)
fcis_model = fcis.models.FCISResNet101(
n_class,
ratios=(0.5, 1.0, 2.0),
anchor_scales=(8, 16, 32),