How to use the cupy.asnumpy function in cupy

To help you get started, we’ve selected a few cupy examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github chainer / chainer / cupy / testing / helper.py View on Github external
def _make_positive_indices(self, impl, args, kw):
    ks = [k for k, v in kw.items() if v in _unsigned_dtypes]
    for k in ks:
        kw[k] = numpy.intp
    mask = cupy.asnumpy(impl(self, *args, **kw)) >= 0
    return numpy.nonzero(mask)
github chainer / chainer / cupy / io / formatting.py View on Github external
def array_str(arr, max_line_width=None, precision=None, suppress_small=None):
    """Returns the string representation of the content of an array.

    Args:
        arr (array_like): Input array. It should be able to feed to
            :func:`cupy.asnumpy`.
        max_line_width (int): The maximum number of line lengths.
        precision (int): Floating point precision. It uses the current printing
            precision of NumPy.
        suppress_small (bool): If ``True``, very small number are printed as
            zeros.

    .. seealso:: :func:`numpy.array_str`

    """
    return numpy.array_str(cupy.asnumpy(arr), max_line_width, precision,
                           suppress_small)
github tensorly / tensorly / tensorly / backend / cupy_backend.py View on Github external
def to_numpy(tensor):
        if isinstance(tensor, cp.ndarray):
            return cp.asnumpy(tensor)
        return tensor
github BorisMuzellec / EllipticalEmbeddings / skipgram_train.py View on Github external
with open(os.path.join(args.output, "losses/losses.txt"), 'a') as loss_file:
                loss_file.write('loss: %.6e \t batch time: %.6e \t compute time: %.6e \n'
                                % (moving_average / (1E6 * 2 * args.window_size), batch_end - batch_start, step_end - step_start))
            moving_average = 0

    end = time.time()

    msg = 'Train Epoch: {} \tLoss: {} \t Time: {}'
    msg = msg.format(epoch, total, end - start)
    logging.info(msg)

    embedds = dict()
    embedds['means'] = cp.asnumpy(w_model.means)
    embedds['vars'] = cp.asnumpy(wr.to_full(w_model.vars) + args.lbda * cp.eye(args.dim).reshape(1, args.dim, args.dim).repeat(w_model.vars.shape[0], axis=0))
    embedds['vars'][0] *= 0
    embedds['c_means'] = cp.asnumpy(w_model.c_means)
    embedds['c_vars'] = cp.asnumpy(wr.to_full(w_model.c_vars) + args.lbda * cp.eye(args.dim).reshape(1, args.dim, args.dim).repeat(w_model.c_vars.shape[0], axis=0))
    embedds['c_vars'][0] *= 0

    with open(os.path.join(args.output, "embeddings/embeddings" + '_' + str(epoch + 1)), "wb") as output_file:
        pkl.dump(embedds, output_file)

    with open(os.path.join(args.output, "losses/epoches" + '_' + str(epoch + 1)), "wb") as epoch_file:
        epoch_file.write(str.encode('epoch: %u \t loss: %.6e\n' % (epoch + 1, total)))

    if w_model.optim == 'adagrad':
        w_model.means_adagrad *= 0
        w_model.c_means_adagrad *= 0
        w_model.vars_adagrad *= 0
        w_model.c_vars_adagrad *= 0
github hvy / chainer-visualization / models / VGG.py View on Github external
def check_add_deconv_layers(self, nobias=True):

        """Add a deconvolutional layer for each convolutional layer already
        defined in the network."""

        if len(self.deconv_blocks) == len(self.conv_blocks):
            return

        for conv_block in self.conv_blocks:
            deconv_block = []
            for conv in conv_block:
                out_channels, in_channels, kh, kw = conv.W.data.shape

                if isinstance(conv.W.data, cupy.ndarray):
                    initialW = cupy.asnumpy(conv.W.data)
                else:
                    initialW = conv.W.data

                deconv = L.Deconvolution2D(out_channels, in_channels,
                                           (kh, kw), stride=conv.stride,
                                           pad=conv.pad,
                                           initialW=initialW,
                                           nobias=nobias)

                if isinstance(conv.W.data, cupy.ndarray):
                    deconv.to_gpu()

                self.add_link('de{}'.format(conv.name), deconv)
                deconv_block.append(deconv)

            self.deconv_blocks.append(deconv_block)
github Santosh-Gupta / SpeedTorch / SpeedTorch / CUPYLive.py View on Github external
def getNumpyVersion(self):
        return cupy.asnumpy(self.CUPYcorpus)
github rossant / pykilosort / pykilosort / postprocess.py View on Github external
def ccg(st1, st2, nbins, tbin):
    st1 = cp.asnumpy(st1)
    st2 = cp.asnumpy(st2)
    return _ccg(st1, st2, nbins, tbin)
github wuga214 / NCE_Projected_LRec / models / wrmf_old.py View on Github external
def solve(R, X, H, lam, rank, alpha, gpu):
    """
    Linear function solver, in the form R = XH^T with weighted loss
    """

    if gpu:
        import cupy as cp
        H = cp.array(H)
        HT = H.T
        matrix_A = HT.dot(H) + cp.array((lam * sparse.identity(rank, dtype=np.float32)).toarray())

        for i in tqdm(xrange(R.shape[1])):
            vector_r = R[:, i]
            vector_x = per_item_gpu(vector_r, matrix_A, H, HT, alpha)
            y_i_gpu = cp.asnumpy(vector_x)
            y_i_cpu = np.copy(y_i_gpu)
            X[i] = y_i_cpu


    else:
        HT = H.T
        matrix_A = HT.dot(H) + (lam * sparse.identity(rank, dtype=np.float32)).toarray()

        for i in tqdm(xrange(R.shape[1])):
            vector_r = R[:, i]
            vector_x = per_item_cpu(vector_r, matrix_A, H, HT, alpha)
            y_i_cpu = vector_x
            X[i] = y_i_cpu
github txytju / Faster-RCNN-LocNet / model / faster_rcnn.py View on Github external
bbox = list()
        label = list()
        score = list()
        # skip cls_id = 0 because it is the background class
        for l in range(1, self.n_class):

            cls_bbox_l = raw_cls_bbox
            prob_l = raw_prob[:, l]
            
            mask = prob_l > self.score_thresh
            cls_bbox_l = cls_bbox_l[mask]
            prob_l = prob_l[mask]
            
            keep = non_maximum_suppression(
                cp.array(cls_bbox_l), self.nms_thresh, prob_l)
            keep = cp.asnumpy(keep)
            
            bbox.append(cls_bbox_l[keep])
            # The labels are in [0, self.n_class - 2].
            label.append((l - 1) * np.ones((len(keep),)))
            score.append(prob_l[keep])

        bbox = np.concatenate(bbox, axis=0).astype(np.float32)
        label = np.concatenate(label, axis=0).astype(np.int32)
        score = np.concatenate(score, axis=0).astype(np.float32)
        
        return bbox, label, score