How to use the pennylane.numpy.array function in PennyLane

To help you get started, we’ve selected a few PennyLane examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github rigetti / pennylane-forest / tests / test_numpy_wavefunction.py View on Github external
def test_qubit_unitary(self, tol):
        """Test that an arbitrary unitary operation works"""
        dev = qml.device("forest.numpy_wavefunction", wires=3)

        @qml.qnode(dev)
        def circuit():
            """Test QNode"""
            qml.Hadamard(wires=0)
            qml.CNOT(wires=[0, 1])
            qml.QubitUnitary(U2, wires=[0, 1])
            return qml.expval(qml.PauliZ(0))

        out_state = U2 @ np.array([1, 0, 0, 1]) / np.sqrt(2)
        obs = np.kron(np.array([[1, 0], [0, -1]]), I)
        self.assertAllAlmostEqual(circuit(), np.vdot(out_state, obs @ out_state), delta=tol)
github XanaduAI / pennylane-sf / tests / test_gaussian.py View on Github external
def test_gaussian_state(self, tol):
        """Test that the GaussianState gate works correctly"""
        V = np.array([[0.5, 0], [0, 2]])
        r = np.array([0, 0])

        wires = [0]

        gate_name = "GaussianState"
        operation = qml.GaussianState

        dev = qml.device("strawberryfields.gaussian", wires=2)

        sf_operation = dev._operation_map[gate_name]

        assert dev.supports_operation(gate_name)

        @qml.qnode(dev)
        def circuit(*args):
            qml.TwoModeSqueezing(0.1, 0, wires=[0, 1])
            operation(*args, wires=wires)
github rigetti / pennylane-forest / tests / test_numpy_wavefunction.py View on Github external
def circuit(x, y, z):
            """Test QNode"""
            qml.BasisState(np.array([1]), wires=0)
            qml.Hadamard(wires=0)
            qml.Rot(x, y, z, wires=0)
            return qml.expval(qml.PauliZ(0))
github rigetti / pennylane-forest / tests / test_numpy_wavefunction.py View on Github external
def test_qubit_unitary(self, tol):
        """Test that an arbitrary unitary operation works"""
        dev = qml.device("forest.numpy_wavefunction", wires=3)

        @qml.qnode(dev)
        def circuit():
            """Test QNode"""
            qml.Hadamard(wires=0)
            qml.CNOT(wires=[0, 1])
            qml.QubitUnitary(U2, wires=[0, 1])
            return qml.expval(qml.PauliZ(0))

        out_state = U2 @ np.array([1, 0, 0, 1]) / np.sqrt(2)
        obs = np.kron(np.array([[1, 0], [0, -1]]), I)
        self.assertAllAlmostEqual(circuit(), np.vdot(out_state, obs @ out_state), delta=tol)
github XanaduAI / pennylane-pq / tests / test_basis_state.py View on Github external
def test_basis_state_on_subsystem(self):
        """Test BasisState with preparations on subsystems."""
        if self.devices is None:
            return
        self.logTestName()

        for device in self.devices:
            for bits_to_flip in [np.array([0, 0, 0]),
                                 np.array([1, 0, 0]),
                                 np.array([0, 1, 1]),
                                 np.array([1, 1, 0]),
                                 np.array([1, 1, 1])]:
                @qml.qnode(device)
                def circuit():
                    qml.BasisState(bits_to_flip, wires=list(range(self.num_subsystems-1)))
                    return qml.expval(qml.PauliZ(0)), qml.expval(qml.PauliZ(1)), qml.expval(qml.PauliZ(2)), qml.expval(qml.PauliZ(3))

                self.assertAllAlmostEqual([1]*(self.num_subsystems-1)-2*bits_to_flip, np.array(circuit()[:-1]), delta=self.tol)
github XanaduAI / pennylane / tests / test_ops.py View on Github external
def test_squeezing_heisenberg(phi, mag):
    """ops: Tests the Heisenberg representation of the Squeezing gate."""
    r = mag
    matrix = cv.Squeezing._heisenberg_rep([r, phi])
    true_matrix = np.array(
        [
            [1, 0, 0],
            [0, np.cosh(r) - np.cos(phi) * np.sinh(r), -np.sin(phi) * np.sinh(r)],
            [0, -np.sin(phi) * np.sinh(r), np.cosh(r) + np.cos(phi) * np.sinh(r)],
        ]
    )
    assert np.allclose(matrix, true_matrix)
github rigetti / pennylane-forest / tests / test_qvm.py View on Github external
dev = plf.QVMDevice(device="2q-qvm", shots=shots)
        dev.apply("RX", wires=[0], par=[theta])
        dev.apply("RX", wires=[1], par=[phi])
        dev.apply("CNOT", wires=[0, 1], par=[])

        O = qml.Identity
        name = "Identity"

        dev._obs_queue = [O(wires=[0], do_queue=False), O(wires=[1], do_queue=False)]
        res = dev.pre_measure()

        res = np.array([dev.expval(name, [0], []), dev.expval(name, [1], [])])

        # below are the analytic expectation values for this circuit (trace should always be 1)
        self.assertAllAlmostEqual(res, np.array([1, 1]), delta=3 / np.sqrt(shots))
github XanaduAI / pennylane / examples / pennylane_run_variational_quantum_eigensolver.py View on Github external
"Cost after step {:5d}: {: .7f} | Variables: [{: .5f},{: .5f}]".format(
            it + 1, cost(var), var[0], var[1]
        )
    )

##############################################################################
# We can plot the path that the variables took during gradient descent. To
# make the plot more clear, we will shorten the range for :math:`v_2`.

fig = plt.figure(figsize=(6, 4))
ax = fig.gca(projection="3d")

X = np.linspace(-3, np.pi / 2, 20)
Y = np.linspace(-3, 3, 20)
xx, yy = np.meshgrid(X, Y)
Z = np.array([[cost([x, y]) for x in X] for y in Y]).reshape(len(Y), len(X))

surf = ax.plot_surface(xx, yy, Z, cmap=cm.coolwarm, antialiased=False)

path_z = [cost(var) + 1e-8 for var in var_gd]
path_x = [v[0] for v in var_gd]
path_y = [v[1] for v in var_gd]
ax.plot(path_x, path_y, path_z, c="green", marker=".", label="graddesc", zorder=10)

ax.set_xlabel("v1")
ax.set_ylabel("v2")
ax.zaxis.set_major_locator(MaxNLocator(nbins=5, prune="lower"))

plt.legend()
plt.show()
github XanaduAI / pennylane / examples / pennylane_run_data_reuploading_classifier.py View on Github external
radius (float: radius of the circle

    Returns:
        Xvals (array[tuple]): coordinates of points
        Xvals (array[int]): classification labels
    """
    Xvals, yvals = [], []

    for i in range(samples):
        x = 2 * (np.random.rand(2)) - 1
        y = 0
        if np.linalg.norm(x - center) < radius:
            y = 1
        Xvals.append(x)
        yvals.append(y)
    return np.array(Xvals), np.array(yvals)
github XanaduAI / pennylane / examples / Q3b_variational-classifier-iris.py View on Github external
# load Iris data and normalise feature vectors
data = np.loadtxt("data/iris_classes1and2_scaled.txt")
X = data[:, 0:2]

# pad the vectors to size 2^2 with constant values
padding = 0.3 * np.ones((len(X), 1))
X_pad = np.c_[np.c_[X, padding], np.zeros((len(X), 1)) ] 

# normalize each input
normalization = np.sqrt(np.sum(X_pad ** 2, -1))
X_norm = (X_pad.T / normalization).T  

# angles for state preparation are new features
features = np.array([get_angles(x) for x in X_norm])   

Y = data[:, -1]

# split into training and validation set
np.random.seed(0)
num_data = len(Y)
num_train = int(0.75 * num_data)
index = np.random.permutation(range(num_data))
feats_train = features[index[:num_train]]
Y_train = Y[index[:num_train]]
feats_val = features[index[num_train:]]
Y_val = Y[index[num_train:]]

# initialize weight layers
num_qubits = 2
num_layers = 6

PennyLane

PennyLane is a cross-platform Python library for quantum computing, quantum machine learning, and quantum chemistry. Train a quantum computer the same way as a neural network.

Apache-2.0
Latest version published 3 days ago

Package Health Score

87 / 100
Full package analysis