How to use the pennylane.numpy.allclose function in PennyLane

To help you get started, we’ve selected a few PennyLane examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github XanaduAI / pennylane-sf / tests / test_gaussian.py View on Github external
dev = qml.device("strawberryfields.gaussian", wires=1)

        @qml.qnode(dev)
        def circuit(a, phi):
            qml.Displacement(a, phi, wires=0)
            return qml.probs(wires=[0])

        a = 0.4
        phi = -0.12

        n = np.arange(cutoff)

        # differentiate with respect to parameter a
        res_F = circuit.jacobian([a, phi], wrt={0}, method="F").flat
        expected_gradient = 2 * np.exp(-a ** 2) * a ** (2 * n - 1) * (n - a ** 2) / fac(n)
        assert np.allclose(res_F, expected_gradient, atol=tol, rtol=0)

        # differentiate with respect to parameter phi
        res_F = circuit.jacobian([a, phi], wrt={1}, method="F").flat
        expected_gradient = 0
        assert np.allclose(res_F, expected_gradient, atol=tol, rtol=0)
github XanaduAI / pennylane-sf / tests / test_fock.py View on Github external
cutoff_dim = 10
        dev = qml.device("strawberryfields.fock", wires=2, cutoff_dim=cutoff_dim)

        sf_operation = dev._operation_map[gate_name]

        assert dev.supports_operation(gate_name)

        @qml.qnode(dev)
        def circuit(*args):
            qml.TwoModeSqueezing(0.1, 0, wires=[0, 1])
            operation(*args, wires=wires)
            return qml.expval(qml.NumberOperator(0)), qml.expval(qml.NumberOperator(1))

        res = circuit(V, r)
        sf_res = SF_gate_reference(sf_operation, cutoff_dim, wires, V, r)
        assert np.allclose(res, sf_res, atol=tol, rtol=0)
github XanaduAI / pennylane / tests / test_default_qubit.py View on Github external
def test_basis_state_2_qubit_subset(self, qubit_device_2_wires, tol, name, par, wires, expected_output):
        """Tests qubit basis state preparation on subsets of qubits"""

        op = getattr(qml.ops, name)

        @qml.qnode(qubit_device_2_wires)
        def circuit():
            op(np.array(par), wires=wires)
            return qml.expval(qml.PauliZ(0)), qml.expval(qml.PauliZ(1))

        assert np.allclose(circuit(), expected_output, atol=tol, rtol=0)
github XanaduAI / pennylane-sf / tests / test_fock.py View on Github external
cutoff_dim = 10
        dev = qml.device("strawberryfields.fock", wires=2, cutoff_dim=cutoff_dim)

        sf_operation = dev._operation_map[gate_name]

        assert dev.supports_operation(gate_name)

        @qml.qnode(dev)
        def circuit(*args):
            qml.TwoModeSqueezing(0.1, 0, wires=[0, 1])
            operation(*args, wires=wires)
            return qml.expval(qml.NumberOperator(0)), qml.expval(qml.NumberOperator(1))

        res = circuit(a, b, c)
        sf_res = SF_gate_reference(sf_operation, cutoff_dim, wires, a * np.exp(1j * b), c)
        assert np.allclose(res, sf_res, atol=tol, rtol=0)
github XanaduAI / pennylane-sf / tests / test_gaussian.py View on Github external
dev = qml.device("strawberryfields.gaussian", wires=2)

        sf_operation = dev._operation_map[gate_name]

        assert dev.supports_operation(gate_name)

        @qml.qnode(dev)
        def circuit(*args):
            qml.TwoModeSqueezing(0.1, 0, wires=[0, 1])
            operation(*args, wires=wires)
            return qml.expval(qml.NumberOperator(0)), qml.expval(qml.NumberOperator(1))

        res = circuit(U)
        sf_res = SF_gate_reference(sf_operation, wires, U)
        assert np.allclose(res, sf_res, atol=tol, rtol=0)
github XanaduAI / pennylane / tests / test_ops.py View on Github external
def test_two_mode_squeezing_heisenberg(phi, mag):
    """ops: Tests the Heisenberg representation of the Beamsplitter gate."""
    r = mag
    matrix = cv.TwoModeSqueezing._heisenberg_rep([r, phi])
    true_matrix = np.array(
        [
            [1, 0, 0, 0, 0],
            [0, np.cosh(r), 0, np.cos(phi) * np.sinh(r), np.sin(phi) * np.sinh(r)],
            [0, 0, np.cosh(r), np.sin(phi) * np.sinh(r), -np.cos(phi) * np.sinh(r)],
            [0, np.cos(phi) * np.sinh(r), np.sin(phi) * np.sinh(r), np.cosh(r), 0],
            [0, np.sin(phi) * np.sinh(r), -np.cos(phi) * np.sinh(r), 0, np.cosh(r)],
        ]
    )
    assert np.allclose(matrix, true_matrix)
github XanaduAI / pennylane / tests / test_ops.py View on Github external
def test_squeezing_heisenberg(phi, mag):
    """ops: Tests the Heisenberg representation of the Squeezing gate."""
    r = mag
    matrix = cv.Squeezing._heisenberg_rep([r, phi])
    true_matrix = np.array(
        [
            [1, 0, 0],
            [0, np.cosh(r) - np.cos(phi) * np.sinh(r), -np.sin(phi) * np.sinh(r)],
            [0, -np.sin(phi) * np.sinh(r), np.cosh(r) + np.cos(phi) * np.sinh(r)],
        ]
    )
    assert np.allclose(matrix, true_matrix)
github XanaduAI / pennylane / tests / test_default_qubit.py View on Github external
def test_pauliz_hadamard(self, theta, phi, varphi, monkeypatch, tol):
        """Test that a tensor product involving PauliZ and PauliY and hadamard works correctly"""
        dev = qml.device("default.qubit", wires=3)
        dev.reset()
        dev.apply("RX", wires=[0], par=[theta])
        dev.apply("RX", wires=[1], par=[phi])
        dev.apply("RX", wires=[2], par=[varphi])
        dev.apply("CNOT", wires=[0, 1], par=[])
        dev.apply("CNOT", wires=[1, 2], par=[])

        with monkeypatch.context() as m:
            m.setattr("numpy.random.choice", lambda x, y, p: (x, p))
            s1, p = dev.sample(["PauliZ", "Hadamard", "PauliY"], [[0], [1], [2]], [[], [], []])

        # s1 should only contain 1 and -1
        assert np.allclose(s1 ** 2, 1, atol=tol, rtol=0)

        mean = s1 @ p
        expected = -(np.cos(varphi) * np.sin(phi) + np.sin(varphi) * np.cos(theta)) / np.sqrt(2)
        assert np.allclose(mean, expected, atol=tol, rtol=0)

        var = (s1 ** 2) @ p - (s1 @ p).real ** 2
        expected = (
            3
            + np.cos(2 * phi) * np.cos(varphi) ** 2
            - np.cos(2 * theta) * np.sin(varphi) ** 2
            - 2 * np.cos(theta) * np.sin(phi) * np.sin(2 * varphi)
        ) / 4
        assert np.allclose(var, expected, atol=tol, rtol=0)
github XanaduAI / pennylane-sf / tests / test_fock.py View on Github external
qml.Displacement(a, phi, wires=1)
            return qml.probs(wires=[0, 1])

        a = 0.4
        phi = -0.12

        c = np.arange(cutoff)
        d = np.arange(cutoff)
        n0, n1 = np.meshgrid(c, d)
        n0 = n0.flatten()
        n1 = n1.flatten()

        # differentiate with respect to parameter a
        res_F = circuit.jacobian([a, phi], wrt={0}, method="F").flat
        expected_gradient = 2 * (a **(-1 + 2*n0 + 2*n1)) * np.exp(-2*a ** 2) * (-2*a ** 2 + n0 + n1) / (fac(n0) * fac(n1))
        assert np.allclose(res_F, expected_gradient, atol=tol, rtol=0)

        # differentiate with respect to parameter phi
        res_F = circuit.jacobian([a, phi], wrt={1}, method="F").flat
        expected_gradient = 0
        assert np.allclose(res_F, expected_gradient, atol=tol, rtol=0)
github XanaduAI / pennylane-sf / tests / test_fock.py View on Github external
r = 0.4
        phi = -0.12

        n = np.arange(cutoff)

        # differentiate with respect to parameter r
        res_F = circuit.jacobian([r, phi], wrt={0}, method="F").flatten()
        assert res_F.shape == (cutoff,)

        expected_gradient = (
            np.abs(np.tanh(r)) ** n * (1 + 2 * n - np.cosh(2 * r)) * fac(n)
            / (2 ** (n + 1) * np.cosh(r) **2 * np.sinh(r) * fac(n / 2) ** 2)
        )
        expected_gradient[n % 2 != 0] = 0
        assert np.allclose(res_F, expected_gradient, atol=tol, rtol=0)

        # differentiate with respect to parameter phi
        res_F = circuit.jacobian([r, phi], wrt={1}, method="F").flat
        expected_gradient = 0
        assert np.allclose(res_F, expected_gradient, atol=tol, rtol=0)

PennyLane

PennyLane is a cross-platform Python library for quantum computing, quantum machine learning, and quantum chemistry. Train a quantum computer the same way as a neural network.

Apache-2.0
Latest version published 2 months ago

Package Health Score

84 / 100
Full package analysis