How to use the pennylane.QNode function in PennyLane

To help you get started, we’ve selected a few PennyLane examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github rigetti / pennylane-forest / tests / test_pyqvm.py View on Github external
def test_qubit_unitary(self, shots):
        """Test that an arbitrary unitary operation works"""
        dev1 = qml.device("forest.qvm", device="3q-pyqvm", shots=shots)
        dev2 = qml.device("forest.qvm", device="9q-square-pyqvm", shots=shots)

        def circuit():
            """Reference QNode"""
            qml.Hadamard(wires=0)
            qml.CNOT(wires=[0, 1])
            qml.QubitUnitary(U2, wires=[0, 1])
            return qml.expval(qml.PauliZ(0))

        circuit1 = qml.QNode(circuit, dev1)
        circuit2 = qml.QNode(circuit, dev2)

        out_state = U2 @ np.array([1, 0, 0, 1]) / np.sqrt(2)
        obs = np.kron(np.array([[1, 0], [0, -1]]), I)

        self.assertAllAlmostEqual(
            circuit1(), np.vdot(out_state, obs @ out_state), delta=3 / np.sqrt(shots)
        )
        self.assertAllAlmostEqual(
            circuit2(), np.vdot(out_state, obs @ out_state), delta=3 / np.sqrt(shots)
        )
github XanaduAI / pennylane / tests / test_qnode.py View on Github external
def test_observable_not_returned(self, operable_mock_device_2_wires):
        """Tests that the QNode properly raises an error if the qfunc does not
           return all observables."""

        def circuit(x):
            qml.RX(x, wires=[0])
            ex = qml.expval(qml.PauliZ(wires=1))
            return qml.expval(qml.PauliZ(wires=0))

        node = qml.QNode(circuit, operable_mock_device_2_wires)

        with pytest.raises(QuantumFunctionError, match="All measured observables"):
            node(0.5)
github XanaduAI / pennylane / tests / test_qnode.py View on Github external
def test_differentiate_positional_multidim(self, tol):
        """Tests that all positional arguments are differentiated
        when they are multidimensional."""

        def circuit(a, b):
            qml.RX(a[0], wires=0)
            qml.RX(a[1], wires=1)
            qml.RX(b[2, 1], wires=2)
            return qml.expval(qml.PauliZ(0)), qml.expval(qml.PauliZ(1)), qml.expval(qml.PauliZ(2))

        dev = qml.device("default.qubit", wires=3)
        circuit = qml.QNode(circuit, dev)

        a = np.array([-np.sqrt(2), -0.54])
        b = np.array([np.pi / 7] * 6).reshape([3, 2])
        circuit_output = circuit(a, b)
        expected_output = np.cos(np.array([[a[0], a[1], b[-1, 0]]]))
        assert np.allclose(circuit_output, expected_output, atol=tol, rtol=0)

        # circuit jacobians
        circuit_jacobian = circuit.jacobian([a, b])
        expected_jacobian = np.array(
            [
                [-np.sin(a[0])] + [0.0] * 7,  # expval 0
                [0.0, -np.sin(a[1])] + [0.0] * 6,  # expval 1
                [0.0] * 2 + [0.0] * 5 + [-np.sin(b[2, 1])],
            ]
        )  # expval 2
github XanaduAI / pennylane / tests / test_tf.py View on Github external
def test_keywordargs_for_wires(self, qubit_device_2_wires, tol):
        """Tests that wires can be passed as keyword arguments."""
        default_q = 0

        def circuit(x, q=default_q):
            qml.RY(x, wires=0)
            return qml.expval(qml.PauliZ(q))

        circuit = qml.QNode(circuit, qubit_device_2_wires).to_tf()

        c = circuit(tf.constant(np.pi), q=1)
        assert np.allclose(c, 1., atol=tol, rtol=0)

        c = circuit(tf.constant(np.pi))
        assert np.allclose(c.numpy(), -1., atol=tol, rtol=0)
github XanaduAI / pennylane / tests / test_tf.py View on Github external
def test_keywordarg_passes_through_classicalnode(self, qubit_device_2_wires, tol):
        """Tests that qnodes' keyword arguments pass through classical nodes."""

        def circuit(w, x=None):
            qml.RX(w, wires=[0])
            qml.RX(x, wires=[1])
            return qml.expval(qml.PauliZ(0)), qml.expval(qml.PauliZ(1))

        circuit = qml.QNode(circuit, qubit_device_2_wires).to_tf()

        def classnode(w, x=None):
            return circuit(w, x=x)

        c = classnode(tf.constant(0.), x=np.pi)
        assert np.allclose(c.numpy(), [1., -1.], atol=tol, rtol=0)
github XanaduAI / pennylane / tests / test_templates_layers.py View on Github external
def test_cvneuralnet_integration(self, gaussian_device_4modes, weights, depth, N):
        """integration test for the CVNeuralNetLayers template."""

        def circuit(weights):
            CVNeuralNetLayers(*weights, wires=range(N))
            return qml.expval(qml.X(wires=0))

        qnode = qml.QNode(circuit, gaussian_device_4modes)

        # execution test
        qnode(weights)
        queue = qnode.queue

        # Test that gates appear in the right order for each layer:
        # BS-R-S-BS-R-D-K
        for l in range(depth):
            gates = [qml.Beamsplitter, qml.Rotation, qml.Squeezing,
                     qml.Beamsplitter, qml.Rotation, qml.Displacement]

            # count the position of each group of gates in the layer
            num_gates_per_type = [0, 6, 4, 4, 6, 4, 4, 4]
            s = np.cumsum(num_gates_per_type)
            gc = l*sum(num_gates_per_type)+np.array(list(zip(s[:-1], s[1:])))
github XanaduAI / pennylane / tests / test_torch.py View on Github external
def test_keywordargs_used(self, qubit_device_1_wire, tol):
        """Tests that qnodes use keyword arguments."""

        def circuit(w, x=None):
            qml.RX(x, wires=[0])
            return qml.expval(qml.PauliZ(0))

        circuit = qml.QNode(circuit, qubit_device_1_wire).to_torch()

        c = circuit(torch.tensor(1.), x=np.pi)
        assert np.allclose(c.numpy(), -1., atol=tol, rtol=0)
github XanaduAI / pennylane / tests / test_torch.py View on Github external
def test_keywordargs_for_wires(self, qubit_device_2_wires, tol):
        """Tests that wires can be passed as keyword arguments."""
        default_q = 0

        def circuit(x, q=default_q):
            qml.RY(x, wires=0)
            return qml.expval(qml.PauliZ(q))

        circuit = qml.QNode(circuit, qubit_device_2_wires).to_torch()

        c = circuit(torch.tensor(np.pi), q=1)
        assert np.allclose(c, 1., atol=tol, rtol=0)

        c = circuit(torch.tensor(np.pi))
        assert np.allclose(c.numpy(), -1., atol=tol, rtol=0)
github XanaduAI / pennylane / tests / test_templates_layers.py View on Github external
"""Test that RandomLayers() acts deterministically when using fixed seed."""
        n_rots = 1
        n_wires = 2
        dev = qml.device('default.qubit', wires=n_wires)
        weights = np.random.randn(n_layers, n_rots)

        def circuit1(weights):
            RandomLayers(weights=weights, wires=range(n_wires), seed=seed)
            return qml.expval(qml.PauliZ(0))

        def circuit2(weights):
            RandomLayers(weights=weights, wires=range(n_wires), seed=seed)
            return qml.expval(qml.PauliZ(0))

        qnode1 = qml.QNode(circuit1, dev)
        qnode2 = qml.QNode(circuit2, dev)
        assert np.allclose(qnode1(weights), qnode2(weights), atol=tol)
github XanaduAI / pennylane / tests / test_qnode.py View on Github external
def check_methods(qf, d):
            q = qml.QNode(qf, operable_mock_CV_device_2_wires)
            # NOTE: the default plugin is a discrete (qubit) simulator, it cannot
            # execute CV gates, but the QNode can be constructed
            q.construct(par)
            assert q.grad_method_for_par == d

PennyLane

PennyLane is a cross-platform Python library for quantum computing, quantum machine learning, and quantum chemistry. Train a quantum computer the same way as a neural network.

Apache-2.0
Latest version published 3 days ago

Package Health Score

87 / 100
Full package analysis