Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
# Graph Operator
op = nk.operator.GraphOperator(hi, siteops=site_operator, bondops=bond_operator)
# Restricted Boltzmann Machine
ma = nk.machine.RbmSpin(hilbert=hi, alpha=1)
ma.init_random_parameters(seed=1234, sigma=0.01)
# Local Metropolis Sampling
sa = nk.sampler.MetropolisLocal(machine=ma)
# Optimizer
opt = nk.optimizer.AdaMax()
# Stochastic reconfiguration
gs = nk.variational.Vmc(
hamiltonian=op,
sampler=sa,
optimizer=opt,
n_samples=1000,
diag_shift=0.1,
method="Gd",
)
gs.run(output_prefix="test", n_iter=30000)
),
nk.layer.Lncosh(input_size=4 * 2 * L),
)
# FFNN Machine
ma = nk.machine.FFNN(hi, layers)
ma.init_random_parameters(seed=1234, sigma=0.1)
# Sampler
sa = nk.sampler.MetropolisHamiltonian(machine=ma, hamiltonian=ha)
# Optimizer
op = nk.optimizer.Sgd(learning_rate=0.01)
# Variational Monte Carlo
gs = nk.variational.Vmc(
hamiltonian=ha, sampler=sa, optimizer=op, n_samples=1000, diag_shift=0.01
)
gs.run(output_prefix="ffnn_test", n_iter=300, save_params_every=10)
# Bose Hubbard Hamiltonian
ha = nk.operator.BoseHubbard(U=4.0, hilbert=hi)
# Jastrow Machine with Symmetry
ma = nk.machine.JastrowSymm(hilbert=hi)
ma.init_random_parameters(seed=1234, sigma=0.01)
# Sampler
sa = nk.sampler.MetropolisHamiltonian(machine=ma, hamiltonian=ha)
# Stochastic gradient descent optimization
op = nk.optimizer.Sgd(learning_rate=0.1)
# Variational Monte Carlo
vmc = nk.variational.Vmc(
hamiltonian=ha,
sampler=sa,
optimizer=op,
n_samples=1000,
diag_shift=5e-3,
use_iterative=False,
method="Sr",
)
vmc.run(output_prefix="test", n_iter=4000)
# Ising spin hamiltonian
ha = nk.operator.Ising(h=1.0, hilbert=hi)
# RBM Spin Machine
ma = nk.machine.RbmSpin(alpha=1, hilbert=hi)
ma.init_random_parameters(seed=1234, sigma=0.01)
# Metropolis Local Sampling
sa = nk.sampler.MetropolisLocal(machine=ma, n_chains=8)
# Optimizer
op = nk.optimizer.Sgd(learning_rate=0.1)
# Stochastic reconfiguration
gs = nk.variational.Vmc(
hamiltonian=ha,
sampler=sa,
optimizer=op,
n_samples=1000,
method="Sr",
diag_shift=0.1,
)
gs.run(output_prefix="test", n_iter=300)
# Hamiltonian
ha = nk.operator.Ising(h=1.0, hilbert=hi)
# Machine
ma = nk.machine.RbmSpin(hilbert=hi, alpha=1)
ma.init_random_parameters(seed=SEED, sigma=0.01)
# Sampler
sa = nk.sampler.MetropolisLocal(machine=ma)
sa.seed(SEED)
# Optimizer
op = nk.optimizer.Sgd(learning_rate=0.1)
# Variational Monte Carlo
vmc = nk.variational.Vmc(
hamiltonian=ha,
sampler=sa,
optimizer=op,
n_samples=1000,
diag_shift=0.1,
method="Sr",
)
vmc.run(output_prefix="test", n_iter=300, save_params_every=10)
rands = np.random.randint(v.shape[1], size=(v.shape[0], 2))
for i in range(v.shape[0]):
iss = rands[i, 0]
jss = rands[i, 1]
vnew[i, iss], vnew[i, jss] = vnew[i, jss], vnew[i, iss]
sa = nk.sampler.MetropolisHastings(ma, exchange_kernel, n_chains=16)
# Optimizer
op = nk.optimizer.Sgd(learning_rate=0.05)
# Stochastic reconfiguration
gs = nk.variational.Vmc(
hamiltonian=ha,
sampler=sa,
optimizer=op,
n_samples=1000,
diag_shift=0.1,
method="Sr",
)
gs.run(output_prefix="test", n_iter=300)