How to use the netket.variational function in NetKet

To help you get started, we’ve selected a few NetKet examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github netket / netket / Test / GroundState / test_groundstate.py View on Github external
def _setup_vmc():
    g = nk.graph.Hypercube(length=8, n_dim=1)
    hi = nk.hilbert.Spin(s=0.5, graph=g)

    ma = nk.machine.RbmSpin(hilbert=hi, alpha=1)
    ma.init_random_parameters(seed=SEED, sigma=0.01)

    ha = nk.operator.Ising(hi, h=1.0)
    sa = nk.sampler.MetropolisLocal(machine=ma)
    sa.seed(SEED)
    op = nk.optimizer.Sgd(learning_rate=0.1)

    vmc = nk.variational.Vmc(
        hamiltonian=ha, sampler=sa, optimizer=op, n_samples=500, diag_shift=0.01
    )

    # Add custom observable
    X = [[0, 1], [1, 0]]
    sx = nk.operator.LocalOperator(hi, [X] * 8, [[i] for i in range(8)])
    vmc.add_observable(sx, "SigmaX")

    return ma, vmc
github netket / netket / Test / GroundState / test_vmc.py View on Github external
def test_vmc_functions():
    ha, sx, ma, sampler, driver = _setup_vmc()

    driver.advance(200)

    state = ma.to_array()

    exact_dist = np.abs(state) ** 2

    for op, name, tol in (ha, "ha", 1e-6), (sx, "sx", 1e-2):
        print("Testing expectation of op={}".format(name))

        exact_locs = [vmc.local_value(op, ma, v) for v in ma.hilbert.states()]
        exact_ex = np.sum(exact_dist * exact_locs).real

        data = vmc.compute_samples(sampler, nsamples=10000, ndiscard=1000)

        ex, lv = vmc.expectation(data, ma, op, return_locvals=True)
        assert ex["Mean"] == approx(np.mean(lv).real, rel=tol)
        assert ex["Mean"] == approx(exact_ex, rel=tol)

    var = vmc.variance(data, ma, ha)
    assert var["Mean"] == approx(0.0, abs=1e-7)

    grad = vmc.gradient(data, ma, ha)
    assert grad.shape == (ma.n_par,)
    assert np.mean(np.abs(grad) ** 2) == approx(0.0, abs=1e-9)

    data_without_logderivs = vmc.compute_samples(
github netket / netket / Examples / Ising1d / ising1d_jastrow.py View on Github external
# Ising spin hamiltonian
ha = nk.operator.Ising(h=1.0, hilbert=hi)

# Jastrow Machine
ma = nk.machine.Jastrow(hilbert=hi)
ma.init_random_parameters(seed=1234, sigma=0.01)

# Metropolis Local Sampling
sa = nk.sampler.MetropolisLocal(machine=ma)

# Optimizer
op = nk.optimizer.Sgd(learning_rate=0.1)

# Stochastic reconfiguration
gs = nk.variational.Vmc(
    hamiltonian=ha,
    sampler=sa,
    optimizer=op,
    n_samples=1000,
    diag_shift=0.1,
    method="Sr",
)

gs.run(output_prefix="test", n_iter=300)
github netket / netket / Examples / GraphOperator / J1J2 / j1j2.py View on Github external
# Custom Hamiltonian operator
op = nk.operator.GraphOperator(hi, bondops=bond_operator, bondops_colors=bond_color)

# Restricted Boltzmann Machine
ma = nk.machine.RbmSpin(hi, alpha=1)
ma.init_random_parameters(seed=1234, sigma=0.01)

# Sampler
sa = nk.sampler.MetropolisHamiltonianPt(machine=ma, hamiltonian=op, n_replicas=16)

# Optimizer
opt = nk.optimizer.Sgd(learning_rate=0.01)

# Variational Monte Carlo
gs = nk.variational.Vmc(
    hamiltonian=op,
    sampler=sa,
    optimizer=opt,
    n_samples=1000,
    use_iterative=True,
    method="Sr",
)

gs.run(output_prefix="test", n_iter=10000)
github netket / netket / Examples / CustomGraph / custom_graph.py View on Github external
# Ising spin hamiltonian
ha = nk.operator.Ising(h=1.0, hilbert=hi)

# RBM Spin Machine
ma = nk.machine.RbmSpin(alpha=1, hilbert=hi)
ma.init_random_parameters(seed=1234, sigma=0.01)

# Metropolis Local Sampling
sa = nk.sampler.MetropolisLocal(machine=ma)

# Optimizer
op = nk.optimizer.Sgd(learning_rate=0.1)

# Stochastic reconfiguration
gs = nk.variational.Vmc(
    hamiltonian=ha,
    sampler=sa,
    optimizer=op,
    n_samples=1000,
    diag_shift=0.1,
    method='Sr')

gs.run(output_prefix='test', n_iter=500)
github netket / netket / Examples / CustomHamiltonian / custom_hamiltonian.py View on Github external
ha += nk.operator.LocalOperator(hi, sx, [i])
    ha += nk.operator.LocalOperator(hi, np.kron(sz, sz), [i, (i + 1) % L])


# RBM Spin Machine
ma = nk.machine.RbmSpinPhase(alpha=1, hilbert=hi)
ma.init_random_parameters(seed=1234, sigma=0.01)

# Metropolis Local Sampling
sa = nk.sampler.MetropolisLocal(machine=ma)

# Optimizer
op = nk.optimizer.AdaDelta()

# Stochastic reconfiguration
gs = nk.variational.Vmc(
    hamiltonian=ha,
    sampler=sa,
    optimizer=op,
    n_samples=300,
    diag_shift=0.1,
    use_iterative=True,
    method='Sr')

gs.run(output_prefix='test', n_iter=3000)
github netket / netket / Examples / Ising2d / ising2d.py View on Github external
# Ising spin hamiltonian at the critical point
ha = nk.operator.Ising(h=3.0, hilbert=hi)

# RBM Spin Machine
ma = nk.machine.RbmSpin(alpha=1, hilbert=hi)
ma.init_random_parameters(seed=1234, sigma=0.01)

# Metropolis Local Sampling
sa = nk.sampler.MetropolisLocal(machine=ma)

# Optimizer
op = nk.optimizer.Sgd(learning_rate=0.1)

# Stochastic reconfiguration
gs = nk.variational.Vmc(
    hamiltonian=ha,
    sampler=sa,
    optimizer=op,
    n_samples=1000,
    diag_shift=0.1,
    method="Sr",
)

gs.run(output_prefix="test", n_iter=1000)
github netket / netket / Examples / Heisenberg1d / heisenberg1d.py View on Github external
ha = nk.operator.Heisenberg(hilbert=hi)

# Symmetric RBM Spin Machine
ma = nk.machine.RbmSpinSymm(alpha=1, hilbert=hi)
ma.init_random_parameters(seed=1234, sigma=0.01)

# Metropolis Exchange Sampling
# Notice that this sampler exchanges two neighboring sites
# thus preservers the total magnetization
sa = nk.sampler.MetropolisExchange(machine=ma, graph=g)

# Optimizer
op = nk.optimizer.Sgd(learning_rate=0.05)

# Stochastic reconfiguration
gs = nk.variational.Vmc(
    hamiltonian=ha,
    sampler=sa,
    optimizer=op,
    n_samples=1000,
    diag_shift=0.1,
    method="Sr",
)

gs.run(output_prefix="test", n_iter=300)
github netket / netket / Examples / Ising1d / ising1d.py View on Github external
# Ising spin hamiltonian
ha = nk.operator.Ising(h=1.0, hilbert=hi)

# RBM Spin Machine
ma = nk.machine.RbmSpin(alpha=1, hilbert=hi)
ma.init_random_parameters(seed=1234, sigma=0.01)

# Metropolis Local Sampling
sa = nk.sampler.MetropolisLocal(machine=ma)

# Optimizer
op = nk.optimizer.Sgd(learning_rate=0.1)

# Stochastic reconfiguration
gs = nk.variational.Vmc(
    hamiltonian=ha,
    sampler=sa,
    optimizer=op,
    n_samples=1000,
    diag_shift=0.1,
    method="Sr",
)

gs.run(output_prefix="test", n_iter=300)
github netket / netket / Examples / J1J2 / j1j2.py View on Github external
op = nk.operator.LocalOperator(hi)
for mat, site in zip(mats, sites):
    op += nk.operator.LocalOperator(hi, mat, site)

# Restricted Boltzmann Machine
ma = nk.machine.RbmSpin(hi, alpha=1)
ma.init_random_parameters(seed=1234, sigma=0.01)

# Sampler
sa = nk.sampler.MetropolisHamiltonianPt(machine=ma, hamiltonian=op, n_replicas=16)

# Optimizer
opt = nk.optimizer.Sgd(learning_rate=0.01)

# Variational Monte Carlo
gs = nk.variational.Vmc(
    hamiltonian=op,
    sampler=sa,
    optimizer=opt,
    n_samples=1000,
    use_iterative=True,
    method="Sr",
)

gs.run(output_prefix="test", n_iter=10000)