How to use the netket.operator.Ising function in NetKet

To help you get started, we’ve selected a few NetKet examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github netket / netket / Test / GroundState / test_groundstate.py View on Github external
def test_imag_time_propagation():
    g = nk.graph.Hypercube(length=8, n_dim=1, pbc=True)
    hi = nk.hilbert.Spin(s=0.5, graph=g)
    ha = nk.operator.Ising(h=0.0, hilbert=hi)

    stepper = nk.dynamics.timestepper(hi.n_states, rel_tol=1e-10, abs_tol=1e-10)
    psi0 = np.random.rand(hi.n_states)
    driver = nk.exact.ExactTimePropagation(
        ha, stepper, t0=0, initial_state=psi0, propagation_type="imaginary"
    )

    for step in driver.iter(dt=0.1, n_iter=1000):
        pass

    assert driver.get_observable_stats()["Energy"]["Mean"] == approx(-8.0)
github netket / netket / Test / GroundState / test_groundstate.py View on Github external
def _setup_vmc():
    g = nk.graph.Hypercube(length=8, n_dim=1)
    hi = nk.hilbert.Spin(s=0.5, graph=g)

    ma = nk.machine.RbmSpin(hilbert=hi, alpha=1)
    ma.init_random_parameters(seed=SEED, sigma=0.01)

    ha = nk.operator.Ising(hi, h=1.0)
    sa = nk.sampler.MetropolisLocal(machine=ma)
    sa.seed(SEED)
    op = nk.optimizer.Sgd(learning_rate=0.1)

    vmc = nk.variational.Vmc(
        hamiltonian=ha, sampler=sa, optimizer=op, n_samples=500, diag_shift=0.01
    )

    # Add custom observable
    X = [[0, 1], [1, 0]]
    sx = nk.operator.LocalOperator(hi, [X] * 8, [[i] for i in range(8)])
    vmc.add_observable(sx, "SigmaX")

    return ma, vmc
github netket / netket / Test / Sampler / test_sampler.py View on Github external
# TESTS FOR SPIN HILBERT
# Constructing a 1d lattice
g = nk.graph.Hypercube(length=6, n_dim=1)

# Hilbert space of spins from given graph
hi = nk.hilbert.Spin(s=0.5, graph=g)
ma = nk.machine.RbmSpin(hilbert=hi, alpha=1)
ma.init_random_parameters(seed=1234, sigma=0.2)

sa = nk.sampler.MetropolisLocal(machine=ma)
samplers["MetropolisLocal RbmSpin"] = sa

sa = nk.sampler.MetropolisLocalPt(machine=ma, n_replicas=4)
samplers["MetropolisLocalPt RbmSpin"] = sa

ha = nk.operator.Ising(hilbert=hi, h=1.0)
sa = nk.sampler.MetropolisHamiltonian(machine=ma, hamiltonian=ha)
samplers["MetropolisHamiltonian RbmSpin"] = sa

# Test with uniform probability
maz = nk.machine.RbmSpin(hilbert=hi, alpha=1)
maz.init_random_parameters(seed=1234, sigma=0)
sa = nk.sampler.MetropolisLocal(machine=maz)
samplers["MetropolisLocal RbmSpin ZeroPars"] = sa

mas = nk.machine.RbmSpinSymm(hilbert=hi, alpha=1)
mas.init_random_parameters(seed=1234, sigma=0.2)
sa = nk.sampler.MetropolisHamiltonianPt(machine=mas, hamiltonian=ha, n_replicas=4)
samplers["MetropolisHamiltonianPt RbmSpinSymm"] = sa

hi = nk.hilbert.Boson(graph=g, n_max=4)
ma = nk.machine.RbmSpin(hilbert=hi, alpha=1)
github netket / netket / Test / GroundState / test_groundstate.py View on Github external
def test_ed():
    first_n = 3
    g = nk.graph.Hypercube(length=8, n_dim=1, pbc=True)
    hi = nk.hilbert.Spin(s=0.5, graph=g)
    ha = nk.operator.Ising(h=1.0, hilbert=hi)

    # Test Lanczos ED with eigenvectors
    res = nk.exact.lanczos_ed(ha, first_n=first_n, compute_eigenvectors=True)
    assert len(res.eigenvalues) == first_n
    assert len(res.eigenvectors) == first_n
    gse = res.mean(ha, 0)
    fse = res.mean(ha, 1)
    assert gse == approx(res.eigenvalues[0], rel=1e-12, abs=1e-12)
    assert fse == approx(res.eigenvalues[1], rel=1e-12, abs=1e-12)

    # Test Lanczos ED without eigenvectors
    res = nk.exact.lanczos_ed(ha, first_n=first_n, compute_eigenvectors=False)
    assert len(res.eigenvalues) == first_n
    assert len(res.eigenvectors) == 0

    # Test Full ED with eigenvectors
github netket / netket / Test / GroundState / test_vmc.py View on Github external
def _setup_vmc():
    L = 4
    g = nk.graph.Hypercube(length=L, n_dim=1)
    hi = nk.hilbert.Spin(s=0.5, graph=g)

    ma = nk.machine.RbmSpin(hilbert=hi, alpha=1)
    ma.init_random_parameters(seed=SEED, sigma=0.01)

    ha = nk.operator.Ising(hi, h=1.0)
    sa = nk.sampler.ExactSampler(machine=ma)
    sa.seed(SEED)
    op = nk.optimizer.Sgd(learning_rate=0.1)

    # Add custom observable
    X = [[0, 1], [1, 0]]
    sx = nk.operator.LocalOperator(hi, [X] * L, [[i] for i in range(8)])

    driver = nk.variational.Vmc(ha, sa, op, 1000)

    return ha, sx, ma, sa, driver
github netket / netket / Test / Operator / test_operator.py View on Github external
import netket as nk
import networkx as nx
import numpy as np

operators = {}

# Ising 1D
g = nk.graph.Hypercube(length=20, n_dim=1, pbc=True)
hi = nk.hilbert.Spin(s=0.5, graph=g)
operators["Ising 1D"] = nk.operator.Ising(h=1.321, hilbert=hi)

# Heisenberg 1D
g = nk.graph.Hypercube(length=20, n_dim=1, pbc=True)
hi = nk.hilbert.Spin(s=0.5, total_sz=0, graph=g)
operators["Heisenberg 1D"] = nk.operator.Heisenberg(hilbert=hi)

# Bose Hubbard
g = nk.graph.Hypercube(length=3, n_dim=2, pbc=True)
hi = nk.hilbert.Boson(n_max=3, n_bosons=6, graph=g)
operators["Bose Hubbard"] = nk.operator.BoseHubbard(U=4.0, hilbert=hi)

# Graph Hamiltonian
sigmax = [[0, 1], [1, 0]]
mszsz = [[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]]
edges = [
    [0, 1],
github netket / netket / Examples / QuantumStateReconstruction / generate_data.py View on Github external
def generate(N, n_basis=20, n_shots=1000, seed=1234):
    g = gr.Hypercube(length=N, n_dim=1, pbc=False)
    hi = hs.Spin(g, s=0.5)
    ha = op.Ising(hilbert=hi, h=1)
    res = exact.lanczos_ed(ha, first_n=1, compute_eigenvectors=True)

    psi = res.eigenvectors[0]

    rotations = []
    training_samples = []
    training_bases = []

    np.random.seed(seed)

    for m in range(n_basis):
        basis = np.random.choice(
            list("XYZ"), size=N, p=[1.0 / N, 1.0 / N, (N - 2.0) / N]
        )

        rotation = build_rotation(hi, basis)
github netket / netket / Benchmarks / local_energy.py View on Github external
import cProfile


import netket as nk
import numpy as np

from netket.operator import local_values

# 1D Lattice
g = nk.graph.Hypercube(length=20, n_dim=1, pbc=True)

# Hilbert space of spins on the graph
hi = nk.hilbert.Spin(s=0.5, graph=g)

# Ising spin hamiltonian
ha = nk.operator.Ising(h=1.0, hilbert=hi)

# RBM Spin Machine
ma = nk.machine.RbmSpin(alpha=1, hilbert=hi)
ma.init_random_parameters(seed=1234, sigma=0.01)

# Metropolis Local Sampling
sa = nk.sampler.MetropolisLocal(machine=ma, n_chains=8)

n_samples = 1000
samples = np.zeros((n_samples, sa.sample_shape[0], sa.sample_shape[1]))
for i, sample in enumerate(sa.samples(n_samples)):
    samples[i] = sample


loc = np.empty(samples.shape[0:2], dtype=np.complex128)