How to use the netket.machine.RbmSpin function in NetKet

To help you get started, we’ve selected a few NetKet examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github netket / netket / Test / GroundState / test_vmc.py View on Github external
def _setup_vmc():
    L = 4
    g = nk.graph.Hypercube(length=L, n_dim=1)
    hi = nk.hilbert.Spin(s=0.5, graph=g)

    ma = nk.machine.RbmSpin(hilbert=hi, alpha=1)
    ma.init_random_parameters(seed=SEED, sigma=0.01)

    ha = nk.operator.Ising(hi, h=1.0)
    sa = nk.sampler.ExactSampler(machine=ma)
    sa.seed(SEED)
    op = nk.optimizer.Sgd(learning_rate=0.1)

    # Add custom observable
    X = [[0, 1], [1, 0]]
    sx = nk.operator.LocalOperator(hi, [X] * L, [[i] for i in range(8)])

    driver = nk.variational.Vmc(ha, sa, op, 1000)

    return ha, sx, ma, sa, driver
github netket / netket / Test / Stats / test_stats.py View on Github external
def _setup():
    g = nk.graph.Hypercube(3, 2)
    hi = nk.hilbert.Spin(g, 0.5)

    ham = nk.operator.Heisenberg(hi)

    ma = nk.machine.RbmSpin(hi, alpha=2)
    ma.init_random_parameters()

    return hi, ham, ma
github netket / netket / Examples / Ising1d / ising1d.py View on Github external
# See the License for the specific language governing permissions and
# limitations under the License.

import netket as nk

# 1D Lattice
g = nk.graph.Hypercube(length=20, n_dim=1, pbc=True)

# Hilbert space of spins on the graph
hi = nk.hilbert.Spin(s=0.5, graph=g)

# Ising spin hamiltonian
ha = nk.operator.Ising(h=1.0, hilbert=hi)

# RBM Spin Machine
ma = nk.machine.RbmSpin(alpha=1, hilbert=hi)
ma.init_random_parameters(seed=1234, sigma=0.01)

# Metropolis Local Sampling
sa = nk.sampler.MetropolisLocal(machine=ma, n_chains=8)

# Optimizer
op = nk.optimizer.Sgd(learning_rate=0.1)

# Stochastic reconfiguration
gs = nk.variational.Vmc(
    hamiltonian=ha,
    sampler=sa,
    optimizer=op,
    n_samples=1000,
    method="Sr",
    diag_shift=0.1,
github netket / netket / Examples / PyNetKet / ground_state.py View on Github external
from __future__ import print_function
import netket as nk

SEED = 12345

# Constructing a 1d lattice
g = nk.graph.Hypercube(length=20, n_dim=1)

# Hilbert space of spins from given graph
hi = nk.hilbert.Spin(s=0.5, graph=g)

# Hamiltonian
ha = nk.operator.Ising(h=1.0, hilbert=hi)

# Machine
ma = nk.machine.RbmSpin(hilbert=hi, alpha=1)
ma.init_random_parameters(seed=SEED, sigma=0.01)

# Sampler
sa = nk.sampler.MetropolisLocal(machine=ma)
sa.seed(SEED)

# Optimizer
op = nk.optimizer.Sgd(learning_rate=0.1)

# Variational Monte Carlo
vmc = nk.variational.Vmc(
    hamiltonian=ha,
    sampler=sa,
    optimizer=op,
    n_samples=1000,
    diag_shift=0.1,
github netket / netket / Examples / J1J2 / j1j2.py View on Github external
mats.append(((-1.0) ** (d + 1) * J[d] * exchange).tolist())
        sites.append([i, (i + d + 1) % L])

# Custom Graph
g = nk.graph.Hypercube(length=L, n_dim=1, pbc=True)

# Spin based Hilbert Space
hi = nk.hilbert.Spin(s=0.5, total_sz=0.0, graph=g)

# Custom Hamiltonian operator
op = nk.operator.LocalOperator(hi)
for mat, site in zip(mats, sites):
    op += nk.operator.LocalOperator(hi, mat, site)

# Restricted Boltzmann Machine
ma = nk.machine.RbmSpin(hi, alpha=1)
ma.init_random_parameters(seed=1234, sigma=0.01)

# Sampler
sa = nk.sampler.MetropolisHamiltonianPt(machine=ma, hamiltonian=op, n_replicas=16)

# Optimizer
opt = nk.optimizer.Sgd(learning_rate=0.01)

# Variational Monte Carlo
gs = nk.variational.Vmc(
    hamiltonian=op,
    sampler=sa,
    optimizer=opt,
    n_samples=1000,
    use_iterative=True,
    method="Sr",
github netket / netket / Examples / Ising1d / ising1d.py View on Github external
# See the License for the specific language governing permissions and
# limitations under the License.

import netket as nk

# 1D Lattice
g = nk.graph.Hypercube(length=20, n_dim=1, pbc=True)

# Hilbert space of spins on the graph
hi = nk.hilbert.Spin(s=0.5, graph=g)

# Ising spin hamiltonian
ha = nk.operator.Ising(h=1.0, hilbert=hi)

# RBM Spin Machine
ma = nk.machine.RbmSpin(alpha=1, hilbert=hi)
ma.init_random_parameters(seed=1234, sigma=0.01)

# Metropolis Local Sampling
sa = nk.sampler.MetropolisLocal(machine=ma)

# Optimizer
op = nk.optimizer.Sgd(learning_rate=0.1)

# Stochastic reconfiguration
gs = nk.variational.Vmc(
    hamiltonian=ha,
    sampler=sa,
    optimizer=op,
    n_samples=1000,
    diag_shift=0.1,
    method="Sr",