Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
cursor = read_auto_connect().cursor()
else:
check_cursor(cursor)
try:
vdf = vDataFrame(name, cursor, schema = schema)
except:
cursor.execute("CREATE TABLE {}.{}(\"number\" Integer, \"date\" Date, \"state\" Varchar(32));".format(str_column(schema), str_column(name)))
try:
path = os.path.dirname(verticapy.__file__) + "/learn/data/amazon.csv"
query = "COPY {}.{}(\"number\", \"date\", \"state\") FROM {} DELIMITER ',' NULL '' ENCLOSED BY '\"' ESCAPE AS '\\' SKIP 1;".format(str_column(schema), str_column(name), "{}")
if ("vertica_python" in str(type(cursor))):
with open(path, "r") as fs:
cursor.copy(query.format('STDIN'), fs)
else:
cursor.execute(query.format("LOCAL '{}'".format(path)))
vdf = vDataFrame(name, cursor, schema = schema)
except:
cursor.execute("DROP TABLE {}.{}".format(str_column(schema), str_column(name)))
raise
return (vdf)
#---#
cursor = read_auto_connect().cursor()
else:
check_cursor(cursor)
try:
vdf = vDataFrame(name, cursor, schema = schema)
except:
cursor.execute("CREATE TABLE {}.{}(\"Name\" Varchar(32), \"Form\" Varchar(32), \"Price\" Float);".format(str_column(schema), str_column(name)))
try:
path = os.path.dirname(verticapy.__file__) + "/learn/data/market.csv"
query = "COPY {}.{}(\"Form\", \"Name\", \"Price\") FROM {} DELIMITER ',' NULL '' ENCLOSED BY '\"' ESCAPE AS '\\' SKIP 1;".format(str_column(schema), str_column(name), "{}")
if ("vertica_python" in str(type(cursor))):
with open(path, "r") as fs:
cursor.copy(query.format('STDIN'), fs)
else:
cursor.execute(query.format("LOCAL '{}'".format(path)))
vdf = vDataFrame(name, cursor, schema = schema)
except:
cursor.execute("DROP TABLE {}.{}".format(str_column(schema), str_column(name)))
raise
return (vdf)
#---#
----------
voronoi: bool, optional
If set to true, a voronoi plot will be drawn. It is only available for
KMeans using 2 predictors.
"""
if (voronoi):
if (len(self.X) == 2):
from verticapy.learn.plot import voronoi_plot
query = "SELECT GET_MODEL_ATTRIBUTE(USING PARAMETERS model_name = '{}', attr_name = 'centers')".format(self.name)
self.cursor.execute(query)
clusters = self.cursor.fetchall()
voronoi_plot(clusters = clusters, columns = self.X)
else:
raise ValueError("Voronoi Plots are only available in 2D")
else:
vdf = vDataFrame(self.input_relation, self.cursor)
self.predict(vdf, "kmeans_cluster")
if (len(self.X) <= 3):
vdf.scatter(columns = self.X, catcol = "kmeans_cluster", max_cardinality = 100, max_nb_points = 10000)
else:
raise ValueError("Clustering Plots are only available in 2D or 3D")
#---#
def to_vdf(self):
"""
---------------------------------------------------------------------------
Creates a vDataFrame of the model.
Returns
-------
vDataFrame
model vDataFrame
"""
return (vDataFrame(self.name, self.cursor))
if not(cursor):
conn = read_auto_connect()
cursor = conn.cursor()
else:
conn = False
check_cursor(cursor)
path = "verticapy_{}.csv".format(gen_name([name]))
try:
df.to_csv(path, index = False)
read_csv(path, cursor, table_name = name, schema = schema, insert = insert)
os.remove(path)
except:
os.remove(path)
raise
from verticapy import vDataFrame
return vDataFrame(input_relation = name, schema = schema, cursor = cursor)
#---#
cursor = read_auto_connect().cursor()
else:
check_cursor(cursor)
try:
vdf = vDataFrame(name, cursor, schema = schema)
except:
cursor.execute("CREATE TABLE {}.{}(\"pclass\" Integer, \"survived\" Integer, \"name\" Varchar(164), \"sex\" Varchar(20), \"age\" Numeric(6,3), \"sibsp\" Integer, \"parch\" Integer, \"ticket\" Varchar(36), \"fare\" Numeric(10,5), \"cabin\" Varchar(30), \"embarked\" Varchar(20), \"boat\" Varchar(100), \"body\" Integer, \"home.dest\" Varchar(100));".format(str_column(schema), str_column(name)))
try:
path = os.path.dirname(verticapy.__file__) + "/learn/data/titanic.csv"
query = "COPY {}.{}(\"pclass\", \"survived\", \"name\", \"sex\", \"age\", \"sibsp\", \"parch\", \"ticket\", \"fare\", \"cabin\", \"embarked\", \"boat\", \"body\", \"home.dest\") FROM {} DELIMITER ',' NULL '' ENCLOSED BY '\"' ESCAPE AS '\\' SKIP 1;".format(str_column(schema), str_column(name), "{}")
if ("vertica_python" in str(type(cursor))):
with open(path, "r") as fs:
cursor.copy(query.format('STDIN'), fs)
else:
cursor.execute(query.format("LOCAL '{}'".format(path)))
vdf = vDataFrame(name, cursor, schema = schema)
except:
cursor.execute("DROP TABLE {}.{}".format(str_column(schema), str_column(name)))
raise
return (vdf)
#---#
skip = " SKIP 1" if (header) else ""
query2 = "COPY {}({}) FROM {} DELIMITER '{}' NULL '{}' ENCLOSED BY '{}' ESCAPE AS '{}'{};".format(input_relation, ", ".join(['"' + column + '"' for column in header_names]), "{}", sep, na_rep, quotechar, escape, skip)
if (genSQL):
print(query1 + "\n" + query2)
else:
if (query1):
cursor.execute(query1)
if ("vertica_python" in str(type(cursor))):
with open(path, "r") as fs:
cursor.copy(query2.format('STDIN'), fs)
else:
cursor.execute(query2.format("LOCAL '{}'".format(path)))
if (query1):
print("The table {} has been successfully created.".format(input_relation))
from verticapy import vDataFrame
return vDataFrame(table_name, cursor, schema = schema)
#---#
Probability cutoff. If this number is not between 0 and 1, a column
corresponding to the probability to be of class 1 will be generated.
Returns
-------
vDataFrame
the vDataFrame of the new relation.
"""
check_types([
("name", name, [str], False),
("view", view, [bool], False),
("cutoff", cutoff, [int, float], False)])
relation = "TABLE" if not(view) else "VIEW"
sql = "CREATE {} {} AS SELECT {}, {} AS {} FROM {}".format(relation, name, ", ".join(self.X), self.deploySQL(cutoff), self.y, self.test_relation)
self.cursor.execute(sql)
return vDataFrame(name, self.cursor)
#---#
load_smart_meters : Ingests the smart meters dataset in the Vertica DB.
(Time Series / Regression).
load_titanic : Ingests the titanic dataset in the Vertica DB.
(Classification).
load_winequality : Ingests the winequality dataset in the Vertica DB.
(Regression / Classification).
"""
check_types([
("schema", schema, [str], False),
("name", name, [str], False)])
if not(cursor):
cursor = read_auto_connect().cursor()
else:
check_cursor(cursor)
try:
vdf = vDataFrame(name, cursor, schema = schema)
except:
cursor.execute("CREATE TABLE {}.{}(\"SepalLengthCm\" Numeric(5,2), \"SepalWidthCm\" Numeric(5,2), \"PetalLengthCm\" Numeric(5,2), \"PetalWidthCm\" Numeric(5,2), \"Species\" Varchar(30));".format(str_column(schema), str_column(name)))
try:
path = os.path.dirname(verticapy.__file__) + "/learn/data/iris.csv"
query = "COPY {}.{}(\"Id\" FILLER Integer, \"SepalLengthCm\", \"SepalWidthCm\", \"PetalLengthCm\", \"PetalWidthCm\", \"Species\") FROM {} DELIMITER ',' NULL '' ENCLOSED BY '\"' ESCAPE AS '\\' SKIP 1;".format(str_column(schema), str_column(name), "{}")
if ("vertica_python" in str(type(cursor))):
with open(path, "r") as fs:
cursor.copy(query.format('STDIN'), fs)
else:
cursor.execute(query.format("LOCAL '{}'".format(path)))
vdf = vDataFrame(name, cursor, schema = schema)
except:
cursor.execute("DROP TABLE {}.{}".format(str_column(schema), str_column(name)))
raise
return (vdf)
#---#
-------
vDataFrame
The vDataFrame associated to the input relation.
"""
check_types([
("relation", relation, [str], False),
("name", name, [str], False),
("dsn", dsn, [str], False),
("schema", schema, [str], False),
("history", history, [list], False),
("saving", saving, [list], False),
("query_on", query_on, [bool], False),
("time_on", time_on, [bool], False)])
name = gen_name([name])
from verticapy import vDataFrame
vdf = vDataFrame("", empty = True)
vdf._VERTICAPY_VARIABLES_["dsn"] = dsn
if not(cursor) and not(dsn):
cursor = read_auto_connect().cursor()
elif not(cursor):
from verticapy import vertica_cursor
cursor = vertica_cursor(dsn)
else:
check_cursor(cursor)
vdf._VERTICAPY_VARIABLES_["input_relation"] = name
vdf._VERTICAPY_VARIABLES_["main_relation"] = relation
vdf._VERTICAPY_VARIABLES_["schema"] = schema
vdf._VERTICAPY_VARIABLES_["schema_writing"] = schema_writing
vdf._VERTICAPY_VARIABLES_["cursor"] = cursor
vdf._VERTICAPY_VARIABLES_["query_on"] = query_on
vdf._VERTICAPY_VARIABLES_["time_on"] = time_on
vdf._VERTICAPY_VARIABLES_["where"] = []