How to use the verticapy.connections.connect.read_auto_connect function in verticapy

To help you get started, we’ve selected a few verticapy examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github vertica / Vertica-ML-Python / verticapy / learn / model_selection.py View on Github external
Returns
-------
int
	the KMeans K
	"""
	check_types([
		("X", X, [list], False), 
		("input_relation", input_relation, [str], False), 
		("n_cluster", n_cluster, [list, tuple], False),
		("init", init, ["kmeanspp", "random"], True),
		("max_iter", max_iter, [int, float], False),
		("tol", tol, [int, float], False),
		("elbow_score_stop", elbow_score_stop, [int, float], False)])
	if not(cursor):
		conn = read_auto_connect()
		cursor = conn.cursor()
	else:
		conn = False
		check_cursor(cursor)
	if not(type(n_cluster) == list):
		L = range(n_cluster[0], n_cluster[1])
	else:
		L = n_cluster
		L.sort()
	schema, relation = schema_relation(input_relation)
	schema = str_column(schema)
	relation_alpha = ''.join(ch for ch in relation if ch.isalnum())
	for i in L:
		cursor.execute("DROP MODEL IF EXISTS {}.__vpython_kmeans_tmp_model_{}__".format(schema, relation_alpha))
		model = KMeans("{}.__vpython_kmeans_tmp_model_{}__".format(schema, relation_alpha), cursor, i, init, max_iter, tol)
		model.fit(input_relation, X)
github vertica / Vertica-ML-Python / verticapy / learn / cluster.py View on Github external
def  __init__(self,
				  name: str,
				  cursor = None,
				  n_cluster: int = 8,
				  init: str = "kmeanspp",
				  max_iter: int = 300,
				  tol: float = 1e-4):
		check_types([
			("name", name, [str], False),
			("n_cluster", n_cluster, [int, float], False),
			("max_iter", max_iter, [int, float], False),
			("tol", tol, [int, float], False)])
		if not(cursor):
			cursor = read_auto_connect().cursor()
		else:
			check_cursor(cursor)
		self.type = "clustering"
		self.name = name
		self.cursor = cursor
		self.n_cluster = n_cluster
		if (type(init) == str):
			self.init = init.lower()
		else:
			self.init = init
		self.max_iter = max_iter 
		self.tol = tol 
	#---#
github vertica / Vertica-ML-Python / verticapy / learn / metrics.py View on Github external
"(SELECT ... FROM ...) x" as long as an alias is given at the end of the
	relation.
cursor: DBcursor, optional
	Vertica DB cursor.

Returns
-------
float
	score
	"""
	check_types([
		("y_true", y_true, [str], False), 
		("y_score", y_score, [str], False), 
		("input_relation", input_relation, [str], False)])
	if not(cursor):
		conn = read_auto_connect()
		cursor = conn.cursor()
	else:
		conn = False
		check_cursor(cursor)
	query  = "SELECT MAX(ABS({} - {})) FROM {}".format(y_true, y_score, input_relation)
	cursor.execute(query)
	result = cursor.fetchone()[0]
	if (conn):
		conn.close()
	return (result)
#---#
github vertica / Vertica-ML-Python / verticapy / learn / metrics.py View on Github external
cursor: DBcursor, optional
	Vertica DB cursor.

Returns
-------
tablesample
 	An object containing the result. For more information, check out
 	utilities.tablesample.
	"""
	check_types([
		("y_true", y_true, [str], False), 
		("y_score", y_score, [str], False), 
		("input_relation", input_relation, [str], False),
		("labels", labels, [list], False)])
	if not(cursor):
		conn = read_auto_connect()
		cursor = conn.cursor()
	else:
		conn = False
		check_cursor(cursor)
	num_classes = str(len(labels))
	query = "SELECT CONFUSION_MATRIX(obs, response USING PARAMETERS num_classes = {}) OVER() FROM (SELECT DECODE({}".format(num_classes, y_true) 
	for idx, item in enumerate(labels):
		query += ", '{}', {}".format(item, idx)
	query += ") AS obs, DECODE({}".format(y_score)
	for idx,item in enumerate(labels):
		query += ", '{}', {}".format(item, idx)
	query += ") AS response FROM {}) x".format(input_relation)
	result = to_tablesample(query, cursor)
	if (conn):
		conn.close()
	result.table_info = False
github vertica / Vertica-ML-Python / verticapy / learn / plot.py View on Github external
Returns
-------
tablesample
 	An object containing the result. For more information, check out
 	utilities.tablesample.
	"""
	check_types([
		("y_true", y_true, [str], False),
		("y_score", y_score, [str], False),
		("input_relation", input_relation, [str], False),
		("nbins", nbins, [int, float], False),
		("auc_roc", auc_roc, [bool], False),
		("best_threshold", best_threshold, [bool], False)])
	if not(cursor):
		conn = read_auto_connect()
		cursor = conn.cursor()
	else:
		conn = False
		check_cursor(cursor)
	query = "SELECT ROC(obs, prob USING PARAMETERS num_bins = {}) OVER() FROM (SELECT (CASE WHEN {} = '{}' THEN 1 ELSE 0 END) AS obs, {}::float AS prob FROM {}) AS prediction_output"
	query = query.format(nbins, y_true, pos_label, y_score, input_relation)
	cursor.execute(query)
	query_result = cursor.fetchall()
	if (conn):
		conn.close()
	threshold, false_positive, true_positive = [item[0] for item in query_result], [item[1] for item in query_result], [item[2] for item in query_result]
	auc=0
	for i in range(len(false_positive) - 1):
		if (false_positive[i + 1] - false_positive[i] != 0.0):
			a = (true_positive[i + 1] - true_positive[i]) / (false_positive[i + 1] - false_positive[i])
			b = true_positive[i + 1] - a * false_positive[i + 1]
github vertica / Vertica-ML-Python / verticapy / utilities.py View on Github external
Char which is enclosing the str values.
escape: str, optional
	Separator between each record.

Returns
-------
dict
	dictionary containing for each column its type.

See Also
--------
read_csv  : Ingests a CSV file in the Vertica DB.
read_json : Ingests a JSON file in the Vertica DB.
	"""
	if not(cursor):
		conn = read_auto_connect()
		cursor = conn.cursor()
	else:
		conn = False
		check_cursor(cursor)
	flex_name = "VERTICAPY_{}_FLEX".format(random.randint(0, 10000000))
	cursor.execute("CREATE FLEX LOCAL TEMP TABLE {}(x int) ON COMMIT PRESERVE ROWS;".format(flex_name))
	header_names = '' if not(header_names) else "header_names = '{}',".format(sep.join(header_names))
	try:
		with open(path, "r") as fs:
			cursor.copy("COPY {} FROM STDIN PARSER FCSVPARSER(type = 'traditional', delimiter = '{}', header = {}, {} enclosed_by = '{}', escape = '{}') NULL '{}';".format(flex_name, sep, header, header_names, quotechar, escape, na_rep), fs)
	except:
		cursor.execute("COPY {} FROM LOCAL '{}' PARSER FCSVPARSER(type = 'traditional', delimiter = '{}', header = {}, {} enclosed_by = '{}', escape = '{}') NULL '{}';".format(flex_name, path, sep, header, header_names, quotechar, escape, na_rep))
	cursor.execute("SELECT compute_flextable_keys('{}');".format(flex_name))
	cursor.execute("SELECT key_name, data_type_guess FROM {}_keys".format(flex_name))
	result = cursor.fetchall()
	dtype = {}
github vertica / Vertica-ML-Python / verticapy / utilities.py View on Github external
name: str
	Text index name.
cursor: DBcursor, optional
	Vertica DB cursor. 
print_info: bool, optional
	If set to true, displays the result of the query.
raise_error: bool, optional
	If the text index couldn't be dropped, raises the entire error instead 
	of displaying a warning.
	"""
	check_types([
		("name", name, [str], False),
		("print_info", print_info, [bool], False),
		("raise_error", raise_error, [bool], False)])
	if not(cursor):
		conn = read_auto_connect()
		cursor = conn.cursor()
	else:
		conn = False
		check_cursor(cursor)
	try:
		query="DROP TEXT INDEX {};".format(name)
		cursor.execute(query)
		if (conn):
			conn.close()
		if (print_info):
			print("The text index {} was successfully dropped.".format(name))
	except:
		if (conn):
			conn.close()
		if (raise_error):
			raise
github vertica / Vertica-ML-Python / verticapy / learn / datasets.py View on Github external
load_amazon       : Ingests the amazon dataset in the Vertica DB.
	(Time Series / Regression).
load_iris         : Ingests the iris dataset in the Vertica DB.
	(Clustering / Classification).
load_market       : Ingests the market dataset in the Vertica DB.
	(Basic Data Exploration).
load_titanic      : Ingests the titanic dataset in the Vertica DB.
	(Classification).
load_winequality  : Ingests the winequality dataset in the Vertica DB.
	(Regression / Classification).
	"""
	check_types([
			("schema", schema, [str], False),
			("name", name, [str], False)])
	if not(cursor):
		cursor = read_auto_connect().cursor()
	else:
		check_cursor(cursor)
	try:
		vdf = vDataFrame(name, cursor, schema = schema)
	except:
		cursor.execute("CREATE TABLE {}.{}(\"time\" Timestamp, \"val\" Numeric(11,7), \"id\" Integer);".format(str_column(schema), str_column(name)))
		try:
			path = os.path.dirname(verticapy.__file__) + "/learn/data/smart_meters.csv"
			query = "COPY {}.{}(\"time\", \"val\", \"id\") FROM {} DELIMITER ',' NULL '' ENCLOSED BY '\"' ESCAPE AS '\\' SKIP 1;".format(str_column(schema), str_column(name), "{}")
			if ("vertica_python" in str(type(cursor))):
				with open(path, "r") as fs:
	   				cursor.copy(query.format('STDIN'), fs)
			else:
				cursor.execute(query.format("LOCAL '{}'".format(path)))
			vdf = vDataFrame(name, cursor, schema = schema)
		except:
github vertica / Vertica-ML-Python / verticapy / learn / ensemble.py View on Github external
max_depth: int = 5,
				  min_samples_leaf: int = 1,
				  min_info_gain: float = 0.0,
				  nbins: int = 32):
		check_types([
			("name", name, [str], False),
			("n_estimators", n_estimators, [int, float], False),
			("max_features", max_features, [str, int, float], False),
			("max_leaf_nodes", max_leaf_nodes, [int, float], False),
			("sample", sample, [int, float], False),
			("max_depth", max_depth, [int, float], False),
			("min_samples_leaf", min_samples_leaf, [int, float], False),
			("min_info_gain", min_info_gain, [int, float], False),
			("nbins", nbins, [int, float], False)])
		if not(cursor):
			cursor = read_auto_connect().cursor()
		else:
			check_cursor(cursor)
		self.type = "classifier"
		self.cursor = cursor
		self.name = name
		self.n_estimators = n_estimators
		self.max_features = max_features
		self.max_leaf_nodes = max_leaf_nodes
		self.sample = sample 
		self.max_depth = max_depth
		self.min_samples_leaf = min_samples_leaf
		self.min_info_gain = min_info_gain
		self.nbins = nbins
	#---#
github vertica / Vertica-ML-Python / verticapy / learn / metrics.py View on Github external
"(SELECT ... FROM ...) x" as long as an alias is given at the end of the
	relation.
cursor: DBcursor, optional
	Vertica DB cursor.

Returns
-------
float
	score
	"""
	check_types([
		("y_true", y_true, [str], False), 
		("y_score", y_score, [str], False), 
		("input_relation", input_relation, [str], False)])
	if not(cursor):
		conn = read_auto_connect()
		cursor = conn.cursor()
	else:
		conn = False
		check_cursor(cursor)
	query  = "SELECT MSE({}, {}) OVER () FROM {}".format(y_true, y_score, input_relation)
	cursor.execute(query)
	result = cursor.fetchone()[0]
	if (conn):
		conn.close()
	return (result)
#---#