Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
info = info[0]
for elem in parameters_dict:
if type(parameters_dict[elem]) == str:
parameters_dict[elem] = parameters_dict[elem].replace("'", "")
if (model_type == "rf_regressor"):
from verticapy.learn.ensemble import RandomForestRegressor
model = RandomForestRegressor(name, cursor, int(parameters_dict['ntree']), int(parameters_dict['mtry']), int(parameters_dict['max_breadth']), float(parameters_dict['sampling_size']), int(parameters_dict['max_depth']), int(parameters_dict['min_leaf_size']), float(parameters_dict['min_info_gain']), int(parameters_dict['nbins']))
elif (model_type == "rf_classifier"):
from verticapy.learn.ensemble import RandomForestClassifier
model = RandomForestClassifier(name, cursor, int(parameters_dict['ntree']), int(parameters_dict['mtry']), int(parameters_dict['max_breadth']), float(parameters_dict['sampling_size']), int(parameters_dict['max_depth']), int(parameters_dict['min_leaf_size']), float(parameters_dict['min_info_gain']), int(parameters_dict['nbins']))
elif (model_type == "logistic_reg"):
from verticapy.learn.linear_model import LogisticRegression
model = LogisticRegression(name, cursor, parameters_dict['regularization'], float(parameters_dict['epsilon']), float(parameters_dict['lambda']), int(parameters_dict['max_iterations']), parameters_dict['optimizer'], float(parameters_dict['alpha']))
elif (model_type == "linear_reg"):
from verticapy.learn.linear_model import ElasticNet
model = ElasticNet(name, cursor, parameters_dict['regularization'], float(parameters_dict['epsilon']), float(parameters_dict['lambda']), int(parameters_dict['max_iterations']), parameters_dict['optimizer'], float(parameters_dict['alpha']))
elif (model_type == "naive_bayes"):
from verticapy.learn.naive_bayes import MultinomialNB
model = MultinomialNB(name, cursor, float(parameters_dict['alpha']))
elif (model_type == "svm_regressor"):
from verticapy.learn.svm import LinearSVR
model = LinearSVR(name, cursor, float(parameters_dict['epsilon']), float(parameters_dict['C']), True, float(parameters_dict['intercept_scaling']), parameters_dict['intercept_mode'], float(parameters_dict['error_tolerance']), int(parameters_dict['max_iterations']))
elif (model_type == "svm_classifier"):
from verticapy.learn.svm import LinearSVC
model = LinearSVC(name, cursor, float(parameters_dict['epsilon']), float(parameters_dict['C']), True, float(parameters_dict['intercept_scaling']), parameters_dict['intercept_mode'], [float(item) for item in parameters_dict['class_weights'].split(",")], int(parameters_dict['max_iterations']))
elif (model_type == "kmeans"):
from verticapy.learn.cluster import KMeans
model = KMeans(name, cursor, -1, parameters_dict['init_method'], int(parameters_dict['max_iterations']), float(parameters_dict['epsilon']))
elif (model_type == "pca"):
from verticapy.learn.decomposition import PCA
model = PCA(name, cursor, 0, bool(parameters_dict['scale']))
elif (model_type == "svd"):
name: str
Name of the the model. The model will be stored in the DB.
cursor: DBcursor, optional
Vertica DB cursor.
tol: float, optional
Determines whether the algorithm has reached the specified accuracy result.
max_iter: int, optional
Determines the maximum number of iterations the algorithm performs before
achieving the specified accuracy result.
solver: str, optional
The optimizer method used to train the model.
Newton : Newton Method
BFGS : Broyden Fletcher Goldfarb Shanno
CGD : Coordinate Gradient Descent
"""
return ElasticNet(name = name,
cursor = cursor,
penalty = 'L1',
tol = tol,
max_iter = max_iter,
solver = solver)
#---#
coef: tablesample
Coefficients and their mathematical information (pvalue, std, value...)
input_relation: str
Train relation.
X: list
List of the predictors.
y: str
Response column.
test_relation: str
Relation used to test the model. All the model methods are abstractions
which will simplify the process. The test relation will be used by many
methods to evaluate the model. If empty, the train relation will be
used as test. You can change it anytime by changing the test_relation
attribute of the object.
"""
return ElasticNet(name = name,
cursor = cursor,
penalty = 'None',
tol = tol,
max_iter = max_iter,
solver = solver)
#---#
name: str
Name of the the model. The model will be stored in the DB.
cursor: DBcursor, optional
Vertica DB cursor.
tol: float, optional
Determines whether the algorithm has reached the specified accuracy result.
max_iter: int, optional
Determines the maximum number of iterations the algorithm performs before
achieving the specified accuracy result.
solver: str, optional
The optimizer method used to train the model.
Newton : Newton Method
BFGS : Broyden Fletcher Goldfarb Shanno
CGD : Coordinate Gradient Descent
"""
return ElasticNet(name = name,
cursor = cursor,
penalty = 'L2',
tol = tol,
max_iter = max_iter,
solver = solver)