How to use the thinc.neural.util.get_array_module function in thinc

To help you get started, we’ve selected a few thinc examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github explosion / thinc / thinc / neural / _classes / maxout.py View on Github external
def normal_init(W, ops):
    if (W ** 2).sum() != 0:
        return
    xp = get_array_module(W)
    scale = xp.sqrt(1.0 / W.shape[-1])
    shape = (W.shape[0], W.shape[-1])
    size = xp.prod(shape)
    for i in range(W.shape[1]):
        xp.copyto(
            W[:, i], xp.random.normal(loc=0, scale=scale, size=size).reshape(shape)
        )
github explosion / spacy-transformers / spacy_transformers / activations.py View on Github external
def from_padded(cls, padded: Array, lengths: List[int]) -> "RaggedArray":
        if max(lengths, default=0) > padded.shape[1]:
            return cls.from_truncated(padded, lengths)
        mask = lengths2mask(lengths)
        assert sum(mask) == sum(lengths)
        all_rows = padded.reshape((-1,) + padded.shape[2:])
        xp = get_array_module(all_rows)
        data = xp.ascontiguousarray(all_rows[mask])
        assert data.shape[0] == sum(lengths)
        return cls(data, lengths)
github explosion / thinc / thinc / backends / base.py View on Github external
def flatten(self, X, dtype=None, pad=0):
        if X is None or len(X) == 0:
            return self.allocate((0,), dtype=dtype or 'f')
        xp = get_array_module(X[0])
        X = [x for x in X if x.size != 0]
        if int(pad) >= 1:
            padded = []
            for x in X:
                padded.append(
                    xp.zeros((pad,) + x.shape[1:], dtype=x.dtype))
                padded.append(x)
            padded.append(
                xp.zeros((pad,) + x.shape[1:], dtype=x.dtype))
            X = padded
        result = xp.concatenate(X)
        if dtype is not None:
            result = xp.asarray(result, dtype=dtype)
        return result
github explosion / spacy-transformers / spacy_transformers / model_registry.py View on Github external
def get_class_tokens(docs, drop=0.0):
    """Output a List[array], where the array is the class vector
    for each sentence in the document. To backprop, we increment the values
    in the Doc's d_last_hidden_state array.
    """
    xp = get_array_module(docs[0]._.get(ATTRS.last_hidden_state))
    outputs = []
    doc_class_tokens = []
    for doc in docs:
        class_tokens = []
        for i, wp in enumerate(doc._.get(ATTRS.word_pieces_)):
            if is_class_token(wp):
                class_tokens.append(i)
        doc_class_tokens.append(xp.array(class_tokens, dtype="i"))
        wp_tensor = doc._.get(ATTRS.last_hidden_state)
        outputs.append(wp_tensor[doc_class_tokens[-1]])

    def backprop_class_tokens(d_outputs, sgd=None):
        for doc, class_tokens, dY in zip(docs, doc_class_tokens, d_outputs):
            if doc._.get(ATTRS.d_last_hidden_state).size == 0:
                xp = get_array_module(doc._.get(ATTRS.last_hidden_state))
                grads = xp.zeros(doc._.get(ATTRS.last_hidden_state).shape, dtype="f")
github explosion / spaCy / examples / pipeline / wiki_entity_linking / train_el.py View on Github external
def get_cossim_loss(self, yh, y, t):
        # Add a small constant to avoid 0 vectors
        # print()
        # print("yh", yh)
        # print("y", y)
        # print("t", t)
        yh = yh + 1e-8
        y = y + 1e-8
        # https://math.stackexchange.com/questions/1923613/partial-derivative-of-cosine-similarity
        xp = get_array_module(yh)
        norm_yh = xp.linalg.norm(yh, axis=1, keepdims=True)
        norm_y = xp.linalg.norm(y, axis=1, keepdims=True)
        mul_norms = norm_yh * norm_y
        cos = (yh * y).sum(axis=1, keepdims=True) / mul_norms
        # print("cos", cos)
        d_yh = (y / mul_norms) - (cos * (yh / norm_yh ** 2))
        # print("abs", xp.abs(cos - t))
        loss = xp.abs(cos - t).sum()
        # print("loss", loss)
        # print("d_yh", d_yh)
        inverse = np.asarray([int(t[i][0]) * d_yh[i] for i in range(len(t))])
        # print("inverse", inverse)
        return loss, -inverse
github explosion / thinc / thinc / neural / _classes / multiheaded_attention.py View on Github external
def _trans(X, *order):
    """Transpose and make contiguous"""
    xp = get_array_module(X)
    return xp.ascontiguousarray(X.transpose(order))
github explosion / thinc / thinc / neural / _classes / multiheaded_attention.py View on Github external
def _split_seqs(QKV, lengths, nH, nD):
    assert sum(lengths) == QKV.shape[0], (sum(lengths), QKV.shape[0])
    Qs = []
    Ks = []
    Vs = []
    i = 0
    xp = get_array_module(QKV)
    for length in lengths:
        qkv = QKV[i:i+length]
        qkv = qkv.reshape((length, 3, nH*nD))
        queries = xp.ascontiguousarray(qkv[:, 0])
        keys = xp.ascontiguousarray(qkv[:, 1])
        values = xp.ascontiguousarray(qkv[:, 2])
        Qs.append(queries.reshape((-1, nH, nD)))
        Ks.append(keys.reshape((-1, nH, nD)))
        Vs.append(values.reshape((-1, nH, nD)))
        i += length
    return Qs, Ks, Vs
github explosion / thinc / thinc / backends / base.py View on Github external
def softplus(self, X, threshold=20., out=None):
        xp = get_array_module(X)
        log1p_exp = xp.log1p(xp.exp(X))
        indices = X >= threshold
        log1p_exp[indices] = X[indices]
        if out is None:
            return log1p_exp
        else:
            out[:] = log1p_exp
            return out