Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def __init__(self, nO=None, nI=None, pieces=2, **kwargs):
Model.__init__(self, **kwargs)
self.nO = nO
self.nI = nI
self.nP = pieces
self.drop_factor = kwargs.get("drop_factor", 1.0)
def __init__(self, child=None, **kwargs):
self.child = child
if child is not None:
self._layers = [child]
else:
self._layers = []
Model.__init__(self, **kwargs)
if "nO" in kwargs:
self.nO = kwargs["nO"]
elif getattr(child, "nO", None):
self.nO = child.nO
self.nr_upd = 0
def __init__(self, lang, nO, drop_factor=0.0, column=0):
Model.__init__(self)
self.column = column
self.nO = nO
# This doesn't seem the cleverest solution,
# but it ensures multiple models load the
# same copy of spaCy if they're deserialised.
self.lang = lang
vectors = self.get_vectors()
self.nM = vectors.shape[1]
self.drop_factor = drop_factor
self.column = column
if self.nM == 0:
raise ValueError(
"Cannot create vectors table with dimension 0.\n"
"If you're using pre-trained vectors, are the vectors loaded?"
)
self.nV = vectors.shape[0]
def __init__(self, nO, nV, seed=None, **kwargs):
Model.__init__(self, **kwargs)
self.column = kwargs.get("column", 0)
self.nO = nO
self.nV = nV
if seed is not None:
self.seed = seed
else:
self.seed = self.id
def __init__(self, nM=300, nH=6, device="cpu"):
Model.__init__(self)
self.attn = MultiHeadedAttention(nM=nM, nH=nH)
self.ffd = PositionwiseFeedForward(nM, 4 * nM)
self.norm = PyTorchWrapper(PytorchLayerNorm(nM, device=device))
self.nM = nM
self.layers_ = [self.attn, self.ffd, self.norm]
def __init__(self, layers, **kwargs):
self._layers = []
for layer in layers:
if isinstance(layer, FeedForward):
self._layers.extend(layer._layers)
else:
self._layers.append(layer)
Model.__init__(self, **kwargs)
def __init__(self, nO=None, nI=None, **kwargs):
Model.__init__(self, **kwargs)
self.nO = nO
self.nI = nI
self.drop_factor = kwargs.get("drop_factor", 1.0)
def __init__(self, nO=None, nI=None, **kwargs):
Model.__init__(self, **kwargs)
self.nO = nO
self.nI = nI
self.drop_factor = kwargs.get("drop_factor", 1.0)
def __init__(self, nW=2, gap=0):
assert gap == 0
Model.__init__(self)
self.nW = nW
self.gap = gap
def __init__(self, nM=300, nH=6, nS=6, device="cpu"):
Model.__init__(self)
self.stack = clone(EncoderLayer(nM=nM, nH=nH, device=device), nS)
self.norm = PyTorchWrapper(PytorchLayerNorm(nM=nM, device=device))