How to use the thinc.api.with_flatten function in thinc

To help you get started, we’ve selected a few thinc examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github explosion / thinc / examples / attention_tagger.py View on Github external
Model.lsuv = True
    with Model.define_operators({"**": clone, ">>": chain, "+": add, "|": concatenate}):
        lower_case = HashEmbed(width, 100, column=0)
        shape = HashEmbed(width // 2, 200, column=1)
        prefix = HashEmbed(width // 2, 100, column=2)
        suffix = HashEmbed(width // 2, 100, column=3)

        model = (
            with_flatten(
                (lower_case | shape | prefix | suffix)
                >> Maxout(width, width+(width//2)*3, pieces=3))
            >> PositionEncode(1000, width)
            >> Residual(
                prepare_self_attention(Affine(width*3, width), nM=width, nH=4)
                >> MultiHeadedAttention()
                >> with_flatten(Affine(width, width)))
            >> with_flatten(Softmax(nr_tag, width))
        )

    train_X, train_y = preprocess(model.ops, extracter, train_data, nr_tag)
    dev_X, dev_y = preprocess(model.ops, extracter, check_data, nr_tag)

    n_train = float(sum(len(x) for x in train_X))
    global epoch_train_acc
    losses = [0.]
    with model.begin_training(train_X[:5000], train_y[:5000], **cfg) as (
        trainer,
        optimizer,
    ):
        trainer.each_epoch.append(track_progress(**locals()))
        trainer.batch_size = min_batch_size
        batch_size = float(min_batch_size)
github explosion / thinc / examples / imdb_attention.py View on Github external
def build_model(nr_class, width, depth, conv_depth, vectors_name, **kwargs):
    with Model.define_operators({"|": concatenate, ">>": chain, "**": clone}):
        embed = (
            HashEmbed(width, 5000, column=1)
            | StaticVectors(vectors_name, width, column=5)
            | HashEmbed(width // 2, 750, column=2)
            | HashEmbed(width // 2, 750, column=3)
            | HashEmbed(width // 2, 750, column=4)
        ) >> LN(Maxout(width))

        sent2vec = (
            with_flatten(embed)
            >> Residual(
                prepare_self_attention(Affine(width*3, width), nM=width, nH=4)
                >> MultiHeadedAttention()
                >> with_flatten(Maxout(width, width, pieces=3))
            )
            >> flatten_add_lengths
            >> ParametricAttention(width, hard=False)
            >> Pooling(mean_pool)
            >> Residual(LN(Maxout(width)))
        )

        model = (
            foreach(sent2vec, drop_factor=2.0)
            >> Residual(
                prepare_self_attention(Affine(width*3, width), nM=width, nH=4)
                >> MultiHeadedAttention()
github explosion / thinc / examples / attention_tagger.py View on Github external
with Model.define_operators({"**": clone, ">>": chain, "+": add, "|": concatenate}):
        lower_case = HashEmbed(width, 100, column=0)
        shape = HashEmbed(width // 2, 200, column=1)
        prefix = HashEmbed(width // 2, 100, column=2)
        suffix = HashEmbed(width // 2, 100, column=3)

        model = (
            with_flatten(
                (lower_case | shape | prefix | suffix)
                >> Maxout(width, width+(width//2)*3, pieces=3))
            >> PositionEncode(1000, width)
            >> Residual(
                prepare_self_attention(Affine(width*3, width), nM=width, nH=4)
                >> MultiHeadedAttention()
                >> with_flatten(Affine(width, width)))
            >> with_flatten(Softmax(nr_tag, width))
        )

    train_X, train_y = preprocess(model.ops, extracter, train_data, nr_tag)
    dev_X, dev_y = preprocess(model.ops, extracter, check_data, nr_tag)

    n_train = float(sum(len(x) for x in train_X))
    global epoch_train_acc
    losses = [0.]
    with model.begin_training(train_X[:5000], train_y[:5000], **cfg) as (
        trainer,
        optimizer,
    ):
        trainer.each_epoch.append(track_progress(**locals()))
        trainer.batch_size = min_batch_size
        batch_size = float(min_batch_size)
        trainer.dropout = 0.1
github explosion / spaCy / spacy / _ml.py View on Github external
column=0,
            )
        )

        if pretrained_dims:
            static_vectors = SpacyVectors >> with_flatten(
                Affine(width, pretrained_dims)
            )
            # TODO Make concatenate support lists
            vectors = concatenate_lists(trained_vectors, static_vectors)
            vectors_width = width * 2
        else:
            vectors = trained_vectors
            vectors_width = width
            static_vectors = None
        tok2vec = vectors >> with_flatten(
            LN(Maxout(width, vectors_width))
            >> Residual((ExtractWindow(nW=1) >> LN(Maxout(width, width * 3)))) ** depth,
            pad=depth,
        )
        cnn_model = (
            tok2vec
            >> flatten_add_lengths
            >> ParametricAttention(width)
            >> Pooling(sum_pool)
            >> Residual(zero_init(Maxout(width, width)))
            >> zero_init(Affine(nr_class, width, drop_factor=0.0))
        )

        linear_model = build_bow_text_classifier(
            nr_class, ngram_size=cfg.get("ngram_size", 1), exclusive_classes=False
        )
github explosion / spaCy / examples / pipeline / wiki_entity_linking / train_el.py View on Github external
def _encoder(in_width, hidden_with, end_width):
        conv_depth = 2
        cnn_maxout_pieces = 3

        with Model.define_operators({">>": chain, "**": clone}):
            convolution = Residual((ExtractWindow(nW=1) >>
                                    LN(Maxout(hidden_with, hidden_with * 3, pieces=cnn_maxout_pieces))))

            encoder = SpacyVectors \
                      >> with_flatten(LN(Maxout(hidden_with, in_width)) >> convolution ** conv_depth, pad=conv_depth) \
                      >> flatten_add_lengths \
                      >> ParametricAttention(hidden_with)\
                      >> Pooling(mean_pool) \
                      >> Residual(zero_init(Maxout(hidden_with, hidden_with))) \
                      >> zero_init(Affine(end_width, hidden_with, drop_factor=0.0))

            # TODO: ReLu or LN(Maxout)  ?
            # sum_pool or mean_pool ?

        return encoder
github explosion / spaCy / spacy / _ml.py View on Github external
embed = concatenate_lists(
                CharacterEmbed(nM=64, nC=8),
                FeatureExtracter(cols) >> with_flatten(norm),
            )
            reduce_dimensions = LN(
                Maxout(width, 64 * 8 + width, pieces=cnn_maxout_pieces)
            )
        else:
            embed = norm

        convolution = Residual(
            ExtractWindow(nW=1)
            >> LN(Maxout(width, width * 3, pieces=cnn_maxout_pieces))
        )
        if char_embed:
            tok2vec = embed >> with_flatten(
                reduce_dimensions >> convolution ** conv_depth, pad=conv_depth
            )
        else:
            tok2vec = FeatureExtracter(cols) >> with_flatten(
                embed >> convolution ** conv_depth, pad=conv_depth
            )

        if bilstm_depth >= 1:
            tok2vec = tok2vec >> PyTorchBiLSTM(width, width, bilstm_depth)
        # Work around thinc API limitations :(. TODO: Revise in Thinc 7
        tok2vec.nO = width
        tok2vec.embed = embed
    return tok2vec
github explosion / thinc / examples / lstm_pos_tagger.py View on Github external
def init_models(n_tags, n_words, widths):
    word_width, tag_width, hidden_width = widths
    with Model.define_operators({'|': concatenate, '>>': chain}):
        word_model = (
            with_flatten(
                Embed(word_width, word_width, n_words), pad=0
            )
            >> BiLSTM(word_width, residual=True)
            >> with_flatten(
                Affine(hidden_width, word_width*2))
        )
        
        state_model = Affine(hidden_width, hidden_width)

        tags_model = (
            Embed(hidden_width, tag_width, n_tags)
        )

        output_model = Softmax(n_tags, hidden_width)
    return word_model, TaggerModel(tags_model, state_model, output_model)
github explosion / spaCy / spacy / _ml.py View on Github external
)
            else:
                embed = uniqued(
                    (glove | norm) >> LN(Maxout(width, width * 2, pieces=3)),
                    column=cols.index(ORTH),
                )
        elif subword_features:
            embed = uniqued(
                (norm | prefix | suffix | shape)
                >> LN(Maxout(width, width * 4, pieces=3)),
                column=cols.index(ORTH),
            )
        elif char_embed:
            embed = concatenate_lists(
                CharacterEmbed(nM=64, nC=8),
                FeatureExtracter(cols) >> with_flatten(norm),
            )
            reduce_dimensions = LN(
                Maxout(width, 64 * 8 + width, pieces=cnn_maxout_pieces)
            )
        else:
            embed = norm

        convolution = Residual(
            ExtractWindow(nW=1)
            >> LN(Maxout(width, width * 3, pieces=cnn_maxout_pieces))
        )
        if char_embed:
            tok2vec = embed >> with_flatten(
                reduce_dimensions >> convolution ** conv_depth, pad=conv_depth
            )
        else: