How to use the tables.Atom.from_dtype function in tables

To help you get started, we’ve selected a few tables examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github btel / SpikeSort / src / spike_sort / io / hdf5.py View on Github external
h5f = _open_file(fname, 'a')
    
    sp = sp_dict['data']
    
    parts = dataset.split('/')
    group = '/'.join(parts[:-1])
    node_name = parts[-1]

    if overwrite:
        try:
            h5f.removeNode(group, node_name)
        except tables.exceptions.NodeError:
            pass
    
    atom = tables.Atom.from_dtype(sp.dtype)
    shape = sp.shape
    filters = tables.Filters(complevel=0, complib='zlib')
    arr_node = h5f.createCArray(group, node_name, atom, shape, 
                                     filters=filters, 
                                     createparents=True)
    arr_node[:] = sp
    
    arr_node.attrs['sampfreq']=sp_dict['FS']
    #attrs = sp_dict.copy()
github btel / SpikeSort / src / spike_sort / io / filters.py View on Github external
"""Write signal"""
        h5f = self.h5file

        sp = sp_dict['data']

        parts = dataset.split('/')
        group = '/'.join(parts[:-1])
        node_name = parts[-1]

        if overwrite:
            try:
                h5f.removeNode(group, node_name)
            except tables.exceptions.NodeError:
                pass

        atom = tables.Atom.from_dtype(sp.dtype)
        shape = sp.shape
        filters = tables.Filters(complevel=0, complib='zlib')
        arr_node = h5f.createCArray(group, node_name, atom, shape,
                                    filters=filters,
                                    createparents=True)
        arr_node[:] = sp

        arr_node.attrs['sampfreq'] = sp_dict['FS']
github vatlab / varianttools / variant_tools / accessor.py View on Github external
"""
        filters = tb.Filters(complevel=9, complib='blosc')       
        group=self.getGroup(chr,groupName)
        #check to see if 0 has been added to the start of indptr
        if len(indptr)==len(rownames):
            indptr=[0]+indptr
        
        for par in ('data', 'indices', 'indptr', 'shape',"rownames","colnames"):
            arr = None
            atom=tb.Atom.from_dtype(np.dtype(np.int32))
            if (par=='data'):
                arr=np.array(data)
                if groupName=="AD_geno" or groupName=="PL_geno":
                    atom=tb.Atom.from_dtype(np.dtype('S20'))
                else:
                    atom=tb.Atom.from_dtype(np.dtype(np.float64))
            elif (par=='indices'):
                arr=np.array(indices)                
            elif (par=='indptr'):
                arr=np.array(indptr)
            elif (par=='shape'):
                arr=np.array(shape)
            elif(par=="rownames"):
                arr=np.array(rownames)
            elif(par=="colnames"):
                arr=np.array(colnames)

            ds = self.file.create_earray(group, par, atom, (0,),filters=filters)
            ds.append(arr)
github fspaolo / altimpy / altimpy / io.py View on Github external
def save_arr_as_mat(fname, arrs, complib='blosc'):
    """
    Given 1D and/or 2D arrays save as a column matrix (2D array).

    fname : name of file to be saved.
    arrs : a list with 1D/2D arrays with *same first dimension*.
    """
    nrow, ncol = 0, 0
    for a in arrs:
        if a.ndim > 1:
            ncol += a.shape[1]
        else:
            ncol += 1
        nrow = a.shape[0]
    f = tb.openFile(fname, 'w')
    atom = tb.Atom.from_dtype(np.dtype('f8'))
    shape = (nrow, ncol)
    filters = tb.Filters(complib=complib, complevel=9)
    d = f.createCArray('/','data', atom=atom, shape=shape, filters=filters)
    j1, j2 = 0, 0
    for a in arrs:
        if a.ndim > 1:
            j2 += a.shape[1]
        else:
            a = a.reshape(nrow, 1)
            j2 += a.shape[1]
        d[:,j1:j2] = a
        j1 = j2
    print "file with new array:", f
    f.close()
github vatlab / varianttools / variant_tools / accessor.py View on Github external
- groupName (string): the group name, for example gene name
        """
        
        filters = tb.Filters(complevel=9, complib='blosc')       
        group=self.getGroup(chr,groupName)
        #check to see if 0 has been added to the start of indptr
        if len(hmatrix.indptr)==len(hmatrix.rownames):
            hmatrix.indptr=[0]+hmatrix.indptr
        
        for par in ('data', 'indices', 'indptr', 'shape',"rownames","colnames"):
            arr = None
            atom=tb.Atom.from_dtype(np.dtype(np.int32))
            if (par=='data'):
                arr=np.array(hmatrix.data)
                if groupName=="AD_geno" or groupName=="PL_geno":
                    atom=tb.Atom.from_dtype(np.dtype('S20'))
                else:
                    atom=tb.Atom.from_dtype(np.dtype(np.float64))
            elif (par=='indices'):
                arr=np.array(hmatrix.indices)                
            elif (par=='indptr'):
                arr=np.array(hmatrix.indptr)
            elif (par=='shape'):
                arr=np.array(hmatrix.shape)
            elif(par=="rownames"):
                arr=np.array(hmatrix.rownames)
            elif(par=="colnames"):
                arr=np.array(hmatrix.colnames)

            ds = self.file.create_earray(group, par, atom, (0,),filters=filters)
            ds.append(arr)
github zackw / active-geolocator / maps / baseline_from_raster.py View on Github external
def write_to(self, fname):
        with tables.open_file(fname, 'w') as f:
            M = f.create_carray(f.root, 'baseline',
                                tables.Atom.from_dtype(self.mtx.dtype),
                                self.mtx.shape,
                                filters=tables.Filters(complevel=6,
                                                       complib='zlib'))
            M[:,:] = self.mtx[:,:]

            M.attrs.resolution  = self.resolution
            M.attrs.fuzz        = self.fuzz
            M.attrs.north       = self.north
            M.attrs.south       = self.south
            M.attrs.east        = self.east
            M.attrs.west        = self.west
            M.attrs.lon_spacing = self.lon_spacing
            M.attrs.lat_spacing = self.lat_spacing
            M.attrs.longitudes  = self.lon
            M.attrs.latitudes   = self.lat
            M.attrs.raster_name = self.raster_name
github 10XGenomics / cellranger / lib / python / cellranger / analysis / io.py View on Github external
raise ValueError("Attempted to write analysis HDF5 version %d data to a version %d file" % (VERSION, version))
    else:
        ds = f.create_array(f.root, VERSION_KEY, np.int64(VERSION))

    subgroup = f.create_group(group, '_'+key)
    for field in namedtuple._fields:
        arr = getattr(namedtuple, field)

        # XML encode strings so we can store them as HDF5 ASCII
        if isinstance(arr, six.string_types):
            arr = np.string_(arr.encode('ascii', 'xmlcharrefreplace'))

        if not hasattr(arr, 'dtype'):
            raise ValueError('%s/%s must be a numpy array or scalar' % (group,key))

        atom = tables.Atom.from_dtype(arr.dtype)
        if len(arr.shape) > 0:
            if arr.size > 0:
                ds = f.create_carray(subgroup, field, atom, arr.shape)
            else:
                ds = f.create_earray(subgroup, field, atom, arr.shape)
            ds[:] = arr
        else:
            ds = f.create_array(subgroup, field, arr)
github scvae / scvae / data.py View on Github external
def saveArray(array, title, group, tables_file):
    name = normaliseString(title)
    if isinstance(array, list):
        array = numpy.array(array)
        name += "_was_list"
    if array.dtype.char == "U":
        encode = numpy.vectorize(lambda s: s.encode("UTF-8"))
        array = encode(array).astype("S")
    atom = tables.Atom.from_dtype(array.dtype)
    data_store = tables_file.create_carray(
        group,
        name,
        atom,
        array.shape,
        title
    )
    data_store[:] = array
github SmokinCaterpillar / pypet / pypet / utils / ptcompat.py View on Github external
def _make_pt2_carray(hdf5_file, *args, **kwargs):
    read_data = False
    if 'obj' in kwargs:
        data = kwargs.pop('obj')
        if data is not None:
            read_data = True
            atom = pt.Atom.from_dtype(data.dtype)
            if 'atom' not in kwargs:
                kwargs['atom']  = atom
            if 'shape' not in kwargs:
                kwargs['shape'] = data.shape
    carray = hdf5_file.createCArray(*args, **kwargs)
    if read_data:
        carray[:] = data[:]
    return carray
github guxd / deep-code-search / pytorch / data_loader.py View on Github external
def save_vecs(vecs, fout):
    fvec = tables.open_file(fout, 'w')
    atom = tables.Atom.from_dtype(vecs.dtype)
    filters = tables.Filters(complib='blosc', complevel=5)
    ds = fvec.create_carray(fvec.root,'vecs', atom, vecs.shape,filters=filters)
    ds[:] = vecs
    print('done')
    fvec.close()