How to use the statistics.pstdev function in statistics

To help you get started, we’ve selected a few statistics examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github Axelrod-Python / axelrod-dojo / src / axelrod_dojo / algorithms / genetic_algorithm.py View on Github external
print("Scoring Generation {}".format(self.generation))

        # Score population
        scores = self.score_all()
        results = list(zip(scores, range(len(scores))))
        results.sort(key=itemgetter(0), reverse=True)

        # Report
        if self.print_output:
            print("Generation", self.generation, "| Best Score:", results[0][0], repr(self.population[results[0][
                1]]))  # prints best result
        # Write the data
        # Note: if using this for analysis, for reproducability it may be useful to
        # pass type(opponent) for each of the opponents. This will allow verification of results post run

        row = [self.generation, mean(scores), pstdev(scores), results[0][0],
               repr(self.population[results[0][1]])]
        self.outputer.write_row(row)

        # Next Population
        indices_to_keep = [p for (s, p) in results[0: self.bottleneck]]

        self.subset_population(indices_to_keep)
        # Add mutants of the best players
        best_mutants = [p.copy() for p in self.population]
        for p in best_mutants:
            p.mutate()
            self.population.append(p)
        # Add random variants
        random_params = [self.params_class(**self.params_kwargs)
                         for _ in range(self.bottleneck // 2)]
        params_to_modify = [params.copy() for params in self.population]
github iver56 / cross-adaptive-audio / standardizer.py View on Github external
}

        for feature in self.feature_statistics:
            if settings.VERBOSE:
                print('Analyzing {} feature statistics'.format(feature))
            series = []
            for sf in self.sound_files:
                series += sf.analysis['series'][feature]

            if len(series) == 0:
                continue

            self.feature_statistics[feature]['min'] = min(series)
            self.feature_statistics[feature]['max'] = max(series)
            self.feature_statistics[feature]['mean'] = statistics.mean(series)
            self.feature_statistics[feature]['standard_deviation'] = statistics.pstdev(series)

        if settings.VERBOSE:
            pprint.pprint(self.feature_statistics)

        return self.feature_statistics
github sglebs / srccheck / utilities / srcdiffplot.py View on Github external
def add_stats(all_before, all_after, entity_names, colors):
    avg_before = statistics.mean(all_before)
    avg_after = statistics.mean(all_after)
    all_before.append(avg_before)
    all_after.append(avg_after)
    entity_names.append("(AVG)")
    colors.append("b")
    median_before = statistics.median(all_before)
    median_after = statistics.median(all_after)
    all_before.append(median_before)
    all_after.append(median_after)
    entity_names.append("(MEDIAN)")
    colors.append("y")
    stdev_before = statistics.pstdev(all_before,avg_before)
    stdev_after = statistics.pstdev(all_after,avg_after)
    all_before.append(stdev_before)
    all_after.append(stdev_after)
    entity_names.append("(STDEV)")
    colors.append("c")
github scrapy / scrapy-bench / bench.py View on Github external
with open(os.path.join(workpath, "Benchmark.txt")) as f:
            for line in f.readlines():
                w.append(float(line))

    click.secho(
        "\nThe results of the benchmark are (all speeds in items/sec) : \n",
        bold=True)
    click.secho(
        "\nTest = '{0}' Iterations = '{1}'\n".format(test, n_runs),
        bold=True)
    click.secho(
        "\nMean : {0} Median : {1} Std Dev : {2}\n".format(
            statistics.mean(w),
            statistics.median(w),
            statistics.pstdev(w)),
        bold=True)

    if upload_result:
        codespeedinfo.uploadresult(test, w)

    os.remove(os.path.join(workpath, "Benchmark.txt"))
github ppaanngggg / ParadoxTrading / ParadoxTrading / Performance / Functions.py View on Github external
def sharpRatio(
        _returns: DataStruct,
        _factor: int = 252,
        _risk_free: float = 0.0,
        _fund_index: str = 'fund'
) -> float:
    fund = _returns[_fund_index]
    tmp_list = [
        a / b - 1.0 - _risk_free for a, b in zip(
            fund[1:], fund[:-1]
        )
    ]
    return statistics.mean(
        tmp_list
    ) / statistics.pstdev(
        tmp_list
    ) * math.sqrt(_factor)
github ppaanngggg / ParadoxTrading / ParadoxTrading / Indicator / General / SharpRate.py View on Github external
def _addOne(self, _data_struct: DataStruct):
        index_value = _data_struct.index()[0]
        price_value = _data_struct[self.use_key][0]
        if self.last_price is not None:
            chg_rate = price_value / self.last_price - 1
            self.buf.append(chg_rate)
            buf_std = statistics.pstdev(self.buf)
            if buf_std != 0:
                self.data.addDict({
                    self.idx_key: index_value,
                    self.ret_key: statistics.mean(self.buf) / buf_std,
                })
        self.last_price = price_value
github redhat-performance / satellite-monitoring / adhoc-scripts / get_stats_from_grafana.py View on Github external
table_data = []
file_data = {}
for d in data:
    d_plain = [i[0] for i in d['datapoints'] if i[0] is not None]
    d_timestamps = [i[1] for i in d['datapoints'] if i[0] is not None]
    d_duration = args.to_ts - args.from_ts
    d_len = len(d_plain)
    if d_len < 5:
        logging.warning('Very low number of datapoints returned for %s: %s' % (d['target'], d_len))
    if len(d_plain) > 0:
        d_min = min(d_plain)
        d_max = max(d_plain)
        d_mean = statistics.mean(d_plain)
        d_median = statistics.median(d_plain)
        d_integral = scipy.integrate.simps(d_plain, d_timestamps) / d_duration
        d_pstdev = statistics.pstdev(d_plain)
        d_pvariance = statistics.pvariance(d_plain)
        d_hist = get_hist(d_plain)
    else:
        d_min = 0
        d_max = 0
        d_mean = 0
        d_median = 0
        d_integral = 0
        d_pstdev = 0
        d_pvariance = 0
        d_hist = {(0, 0): 0}
    table_row_data = [d_min, d_max, d_mean, d_median, d_integral, d_pstdev, d_pvariance, d_hist, d_duration, d_len]
    file_row = [d['target']] + table_row_data
    table_row = [d['target']] + reformat_number_list(table_row_data)
    table_data.append(table_row)
    file_data[d['target']] = {table_header[i]:file_row[i] for i in range(len(table_header))}
github sk89q / plumeria / orchard / stats.py View on Github external
def pstdev(text):
    """
    Finds the population standard deviation of a space-separated list of numbers.

    Example::

        /pstdev 33 54 43 65 43 62
    """
    return format_output(statistics.pstdev(parse_numeric_list(text)))
github KieranLitschel / PredictingClosingPriceTomorrow / Finance.py View on Github external
def bollingerBandsPDiff(self, series, n=20, k=2):
        if len(series) >= n:
            close = series[-1]
            period = series[len(series) - n: len(series)]
            sman = sum(period) / n
            periodStd = statistics.pstdev(period)
            upperBand = sman + periodStd * k
            lowerBand = sman - periodStd * k
            pDiffCloseUpperBand = ((upperBand - close) / close) * 100
            pDiffCloseLowerBand = ((lowerBand - close) / close) * 100
            pDiffSmaAbsBand = ((upperBand - sman) / sman) * 100
            return pDiffCloseUpperBand, pDiffCloseLowerBand, pDiffSmaAbsBand
        else:
            return None, None, None