Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def test_gen_tsv():
output_tsv = io.StringIO()
percentiles = {'views': 60, 'global_usage_count': 10}
pop_fields = ['views', 'global_usage_count']
with open(os.path.join(RESOURCES, 'mock_popularity_dump.tsv'), 'r') as tsv:
generate_popularity_tsv(tsv, output_tsv, percentiles, pop_fields)
output_tsv.seek(0)
scores = _parse_normalized_tsv(output_tsv)
# Scores should be floats ranging from 0 to 100.
for _, score in scores.items():
assert 0 < score < 100
# The score of the third row should be the average of the first and second
assert statistics.mean([scores[0], scores[1]]) == scores[2]
all_bleu_scores = []
all_sym_acc = []
for predict_example, test_example, test_sym in iter_eval:
predict_example = predict_example.strip()
test_example = test_example.strip().split('\t')[-2]
test_sym = test_sym.strip().split(' ')
# check bleu
bleu_score = evaluate_bleu_score(predict_example, test_example)
sym_acc = evaluate_sym_acc(predict_example, test_sym, test_example)
all_bleu_scores.append(bleu_score)
all_sym_acc.append(sym_acc)
avg_bleu_score = 100 * statistics.mean(all_bleu_scores)
avg_sym_acc = 100 * statistics.mean(all_sym_acc)
print("=" * 80)
print(" " * 20 + " FollowUp Dataset Evaluation Result")
print("=" * 80)
print("BLEU Score: {:.2f} (%)".format(avg_bleu_score))
print("Symbol Acc: {:.2f} (%)".format(avg_sym_acc))
line_token_lengths = [len(token) for token in tokens]
token_lengths.append([len(tokens),
sum(line_token_lengths) / len(tokens)])
line = f.readline()
total_tokens = sum([pair[0] for pair in token_lengths])
total_chars = sum([pair[0] * pair[1] for pair in token_lengths])
average_chars = total_chars / total_tokens
print(f'Character per word: average = {average_chars}.')
print(f'Word count per line:'
f'\n\taverage = {statistics.mean(line_lengths)},'
f'\n\tmedian = {statistics.median(line_lengths)},'
f'\n\tmax = {max(line_lengths)},'
f'\n\tmin = {min(line_lengths)},'
f'\n\tstddev = {statistics.stdev(line_lengths)}.')
return statistics.mean(line_lengths), average_chars
def add_stats(all_before, all_after, entity_names, colors):
avg_before = statistics.mean(all_before)
avg_after = statistics.mean(all_after)
all_before.append(avg_before)
all_after.append(avg_after)
entity_names.append("(AVG)")
colors.append("b")
median_before = statistics.median(all_before)
median_after = statistics.median(all_after)
all_before.append(median_before)
all_after.append(median_after)
entity_names.append("(MEDIAN)")
colors.append("y")
stdev_before = statistics.pstdev(all_before,avg_before)
stdev_after = statistics.pstdev(all_after,avg_after)
all_before.append(stdev_before)
all_after.append(stdev_after)
entity_names.append("(STDEV)")
----------
conn : DBobject
Connection object to temporary database
path : str
defines path to the files
'''
#process raw data with once a day routine
return_data, lamp_data = whole_day_routine(m_raw_data)
FW, GWX, GWY = wheelpos_routine(m_raw_data)
#put all data to a database that uses a condition
for key, value in return_data.items():
m = m_raw_data.mnemonic(key)
length = len(value)
mean = statistics.mean(value)
deviation = statistics.stdev(value)
dataset = (float(m.meta['start']), float(m.meta['end']), length, mean, deviation)
sql.add_data(conn, key, dataset)
#add rest of the data to database -> no conditions applied
for identifier in mn.mnemSet_day:
m = m_raw_data.mnemonic(identifier)
temp = []
#look for all values that fit to the given conditions
for element in m:
temp.append(float(element['value']))
#return None if no applicable data was found
if len(temp) > 2:
length = len(temp)
mean = statistics.mean(temp)
def _addOne(self, _data_struct: DataStruct):
index_value = _data_struct.index()[0]
self.buf.append(_data_struct.getColumn(self.use_key)[0])
if len(self.data) > self.period:
const_std = statistics.pstdev(self.buf[-self.period:])
self.dynamic_n *= const_std / self.prev_std
self.dynamic_n = max(self.min_n, self.dynamic_n)
self.dynamic_n = min(self.max_n, self.dynamic_n)
tmp_n = int(round(self.dynamic_n))
mean = statistics.mean(self.buf[-tmp_n:])
std = statistics.pstdev(self.buf[-tmp_n:])
self.data.addRow(
[index_value, mean + self.rate * std,
mean, mean - self.rate * std],
self.keys
)
self.prev_std = const_std
else:
if len(self.data) == self.period:
self.prev_std = statistics.pstdev(self.buf)
self.data.addRow(
[index_value, None, None, None],
self.keys
if isinstance(request.args.get('bulkParams', '{}'), str):
bulk_params = json.loads(request.args.get('bulkParams', '{}'))
else:
bulk_params = request.args.get('bulkParams', {})
cubic = bulk_params.get(
'cubic', 'true').lower() == 'true'
structure = bulk_params.get('structure', 'fcc')
lattice_constant = float(bulk_params.get('lattice_constant', 4.0))
elements = bulk_params.get('elements', ['Pt'])
input_format = str(bulk_params.get('format', 'cif') or 'cif')
if elements:
lattice_constant = statistics.mean(
atomic_radii[x] for x in elements) * (2 * math.sqrt(2) / 100.)
for i in range(1, 5):
try:
atoms = ase.build.bulk(
''.join(
elements[
:i]),
structure,
a=lattice_constant,
cubic=cubic)
break
except Exception as e:
print(e)
pass
for i, atom in enumerate(atoms):
gene_exp_list = gene_expression_lists[gene]
scores_list = [gene]
cluster = cluster_group[scope][cluster_name]
for cluster_label in cluster:
# cell_annot = cluster[name]
cell_annot_expressions = []
for cell in cluster[cluster_label]:
if cell not in cells: continue
index_of_cell_in_matrix = cells[cell] - 1
gene_exp_in_cell = gene_exp_list[index_of_cell_in_matrix]
cell_annot_expressions.append(gene_exp_in_cell)
if len(cell_annot_expressions) == 0: continue
mean_cluster_expression = round(mean(cell_annot_expressions), 3)
scores_list.append(mean_cluster_expression)
if i % 1000 == 0 and i != 0:
print(
'Processed ' + str(i) + ' of ' + str(len(gene_expression_lists)) + ' ' +
'for ' + scope + ', cluster ' + cluster_name
)
scores_lists.append(scores_list)
scores_lists.reverse()
return scores_lists
def get_job_metrics(job_day_list):
# max, min, mean
job_elapsed_list = [job_day.job_elapsed for job_day in job_day_list]
if job_elapsed_list:
return max(job_elapsed_list), min(job_elapsed_list), mean(job_elapsed_list)
else:
return 0, 0, 0
with args.data() as blob:
table = make_table(byte_word)
results = boyer_moore_horspool_search(blob, byte_word, table)
for result in results:
log.debug(result.decode('utf-8').strip())
log.info('検索結果: %d 件' % len(results))
if __name__ == '__main__':
args = parse_argument()
if args.measure:
setup = 'from __main__ import main'
sec = timeit.repeat('main()', setup=setup, repeat=3, number=5)
log.setLevel(logging.INFO)
log.info('平均実行時間: %f sec' % statistics.mean(sec))
else:
main()