Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
link_inputs = param.Boolean(default=True, doc="""
By default, the link_inputs parameter is set to True so that
when applying shade, backends that support linked streams
update RangeXY streams on the inputs of the shade operation.""")
max_samples = param.Integer(default=5000, doc="""
Maximum number of samples to display at the same time.""")
random_seed = param.Integer(default=42, doc="""
Seed used to initialize randomization.""")
streams = param.List(default=[RangeXY], doc="""
List of streams that are applied if dynamic=True, allowing
for dynamic interaction with the plot.""")
x_range = param.NumericTuple(default=None, length=2, doc="""
The x_range as a tuple of min and max x-value. Auto-ranges
if set to None.""")
y_range = param.NumericTuple(default=None, length=2, doc="""
The x_range as a tuple of min and max y-value. Auto-ranges
if set to None.""")
def _process_layer(self, element, key=None):
if not isinstance(element, Dataset):
raise ValueError("Cannot downsample non-Dataset types.")
if element.interface not in column_interfaces:
element = element.clone(tuple(element.columns().values()))
xstart, xend = self.p.x_range if self.p.x_range else element.range(0)
ystart, yend = self.p.y_range if self.p.y_range else element.range(1)
colormap.""")
color_key = param.ClassSelector(class_=(Iterable, Callable, dict), doc="""
Iterable or callable which returns colors as hex colors, to
be used for the color key of categorical datashader output.
Callable type must allow mapping colors between 0 and 1.""")
normalization = param.ClassSelector(default='eq_hist',
class_=(basestring, Callable),
doc="""
The normalization operation applied before colormapping.
Valid options include 'linear', 'log', 'eq_hist', 'cbrt',
and any valid transfer function that accepts data, mask, nbins
arguments.""")
clims = param.NumericTuple(default=None, length=2, doc="""
Min and max data values to use for colormap interpolation, when
wishing to override autoranging.
""")
link_inputs = param.Boolean(default=True, doc="""
By default, the link_inputs parameter is set to True so that
when applying shade, backends that support linked streams
update RangeXY streams on the inputs of the shade operation.
Disable when you do not want the resulting plot to be interactive,
e.g. when trying to display an interactive plot a second time.""")
@classmethod
def concatenate(cls, overlay):
"""
Concatenates an NdOverlay of Image types into a single 3D
xarray Dataset.
plot object and the displayed object; other plotting handles
can be accessed via plot.handles.""")
finalize_hooks = param.HookList(default=[], doc="""
Deprecated; use hooks options instead.""")
hooks = param.HookList(default=[], doc="""
Optional list of hooks called when finalizing a plot. The
hook is passed the plot object and the displayed element, and
other plotting handles can be accessed via plot.handles.""")
sublabel_format = param.String(default=None, allow_None=True, doc="""
Allows labeling the subaxes in each plot with various formatters
including {Alpha}, {alpha}, {numeric} and {roman}.""")
sublabel_position = param.NumericTuple(default=(-0.35, 0.85), doc="""
Position relative to the plot for placing the optional subfigure label.""")
sublabel_size = param.Number(default=18, doc="""
Size of optional subfigure label.""")
projection = param.Parameter(default=None, doc="""
The projection of the plot axis, default of None is equivalent to
2D plot, '3d' and 'polar' are also supported by matplotlib by default.
May also supply a custom projection that is either a matplotlib
projection type or implements the `_as_mpl_axes` method.""")
show_frame = param.Boolean(default=False, doc="""
Whether or not to show a complete frame around the plot.""")
_close_figures = True
color_key = param.ClassSelector(class_=(Iterable, Callable, dict), doc="""
Iterable or callable that returns colors as hex colors, to
be used for the color key of categorical datashader output.
Callable type must allow mapping colors for supplied values
between 0 and 1.""")
normalization = param.ClassSelector(default='eq_hist',
class_=(basestring, Callable),
doc="""
The normalization operation applied before colormapping.
Valid options include 'linear', 'log', 'eq_hist', 'cbrt',
and any valid transfer function that accepts data, mask, nbins
arguments.""")
clims = param.NumericTuple(default=None, length=2, doc="""
Min and max data values to use for colormap interpolation, when
wishing to override autoranging.
""")
min_alpha = param.Number(default=40, bounds=(0, 255), doc="""
The minimum alpha value to use for non-empty pixels when doing
colormapping, in [0, 255]. Use a higher value to avoid
undersaturation, i.e. poorly visible low-value datapoints, at
the expense of the overall dynamic range..""")
@classmethod
def concatenate(cls, overlay):
"""
Concatenates an NdOverlay of Image types into a single 3D
xarray Dataset.
"""
Enables dynamic processing by default.""")
preserve_topology = param.Boolean(default=False, doc="""
Whether to preserve topology between geometries. If disabled
simplification can produce self-intersecting or otherwise
invalid geometries but will be much faster.""")
streams = param.List(default=[RangeXY], doc="""
List of streams that are applied if dynamic=True, allowing
for dynamic interaction with the plot.""")
tolerance_factor = param.Number(default=0.002, doc="""
The tolerance distance for path simplification as a fraction
of the square root of the area of the current viewport.""")
x_range = param.NumericTuple(default=None, length=2, doc="""
The x_range as a tuple of min and max x-value. Auto-ranges
if set to None.""")
y_range = param.NumericTuple(default=None, length=2, doc="""
The x_range as a tuple of min and max y-value. Auto-ranges
if set to None.""")
zoom_levels = param.Integer(default=20, doc="""
The number of zoom levels to cache.""")
@param.parameterized.bothmethod
def instance(self_or_cls,**params):
inst = super(resample_geometry, self_or_cls).instance(**params)
inst._cache = {}
return inst
Method of automatically determining KDE bandwidth""")
bandwidth = param.Number(default=None, doc="""
Allows supplying explicit bandwidth value rather than relying
on scott or silverman method.""")
cut = param.Number(default=3, doc="""
Draw the estimate to cut * bw from the extreme data points.""")
filled = param.Boolean(default=False, doc="""
Controls whether to return filled or unfilled contours.""")
n_samples = param.Integer(default=100, doc="""
Number of samples to compute the KDE over.""")
x_range = param.NumericTuple(default=None, length=2, doc="""
The x_range as a tuple of min and max x-value. Auto-ranges
if set to None.""")
y_range = param.NumericTuple(default=None, length=2, doc="""
The x_range as a tuple of min and max y-value. Auto-ranges
if set to None.""")
def _process(self, element, key=None):
try:
from scipy import stats
except ImportError:
raise ImportError('%s operation requires SciPy to be installed.' % type(self).__name__)
xdim, ydim = element.dimensions()[:2]
params = {}
if isinstance(element, Bivariate):
from .sheetviews import SheetView, SheetOverlay, Contours, \
SheetStack, Points, CoordinateGrid, DataGrid
from .views import NdMapping, Stack, GridLayout, Layout, Overlay, View,\
Annotation, Grid
class PlotSaver(param.ParameterizedFunction):
"""
Parameterized function for saving the plot of a View object to
disk either as a static figure or as an animation. Keywords that
are not parameters are passed into the anim method of the
appropriate plot for animations and into matplotlib.figure.savefig
for static figures.
"""
size = param.NumericTuple(default=(5, 5), doc="""
The matplotlib figure size in inches.""")
filename = param.String(default=None, allow_None=True, doc="""
This is the filename of the saved file. The output file type
will be inferred from the file extension.""")
anim_opts = param.Dict(
default={'.webm':({}, ['-vcodec', 'libvpx', '-b', '1000k']),
'.mp4':({'codec':'libx264'}, ['-pix_fmt', 'yuv420p']),
'.gif':({'fps':10}, [])}, doc="""
The arguments to matplotlib.animation.save for different
animation formats. The key is the file extension and the tuple
consists of the kwargs followed by a list of arguments for the
'extra_args' keyword argument.""" )
class LegendPlot(ElementPlot):
legend_position = param.ObjectSelector(objects=["top_right",
"top_left",
"bottom_left",
"bottom_right",
'right', 'left',
'top', 'bottom'],
default="top_right",
doc="""
Allows selecting between a number of predefined legend position
options. The predefined options may be customized in the
legend_specs class attribute.""")
legend_offset = param.NumericTuple(default=(0, 0), doc="""
If legend is placed outside the axis, this determines the
(width, height) offset in pixels from the original position.""")
legend_cols = param.Integer(default=False, doc="""
Whether to lay out the legend as columns.""")
legend_specs = {'right': 'right', 'left': 'left', 'top': 'above',
'bottom': 'below'}
def _process_legend(self, plot=None):
plot = plot or self.handles['plot']
if not plot.legend:
return
legend = plot.legend[0]
cmapper = self.handles.get('color_mapper')
if cmapper:
A short description of the purpose of the current set of tasks.''')
metadata = param.Dict(default={}, doc='''
Metadata information to add to the info file.''')
max_concurrency = param.Integer(default=2, allow_None=True, doc='''
Concurrency limit to impose on the launch. As the current class
uses subprocess locally, multiple processes are possible at
once. Set to None for no limit (eg. for clusters)''')
reduction_fn = param.Callable(default=None, doc='''
A callable that will be invoked when the Launcher has completed
all tasks. For example, this could inform the user of completion
(eg. send an e-mail) among other possibilities.''')
timestamp = param.NumericTuple(default=(0,)*9, doc='''
Optional override of timestamp (default timestamp set on launch
call) in Python struct_time 9-tuple format. Useful when you
need to have a known root_directory path (see root_directory
documentation) before launch. For example, you should store
state related to analysis (eg. pickles) in the same location as
everything else.''')
timestamp_format = param.String(default='%Y-%m-%d_%H%M', allow_None=True, doc='''
The timestamp format for the root directories in python datetime
format. If None, the timestamp is omitted from root directory
name.''')
def __init__(self, batch_name, args, command, **params):
self._pprint_args = ([],[],None,{})
geom['holes'] = interiors
paths.append(geom)
contours = contour_type(paths, label=element.label, kdims=element.kdims, vdims=vdims)
if self.p.overlaid:
contours = element * contours
return contours
class histogram(Operation):
"""
Returns a Histogram of the input element data, binned into
num_bins over the bin_range (if specified) along the specified
dimension.
"""
bin_range = param.NumericTuple(default=None, length=2, doc="""
Specifies the range within which to compute the bins.""")
bins = param.ClassSelector(default=None, class_=(np.ndarray, list, tuple), doc="""
An explicit set of bin edges.""")
cumulative = param.Boolean(default=False, doc="""
Whether to compute the cumulative histogram""")
dimension = param.String(default=None, doc="""
Along which dimension of the Element to compute the histogram.""")
frequency_label = param.String(default=None, doc="""
Format string defining the label of the frequency dimension of the Histogram.""")
groupby = param.ClassSelector(default=None, class_=(basestring, Dimension), doc="""
Defines a dimension to group the Histogram returning an NdOverlay of Histograms.""")