How to use the nevergrad.functions.ArtificialFunction function in nevergrad

To help you get started, we’ve selected a few nevergrad examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github facebookresearch / nevergrad / nevergrad / benchmark / test_xpbase.py View on Github external
def test_is_incoherent(optimizer: str, num_workers: int, expected: bool) -> None:
    func = ArtificialFunction(name="sphere", block_dimension=2)
    xp = xpbase.Experiment(func, optimizer=optimizer, budget=300, num_workers=num_workers)
    np.testing.assert_equal(xp.is_incoherent, expected)
github facebookresearch / nevergrad / nevergrad / benchmark / test_xpbase.py View on Github external
def test_equality() -> None:
    func = ArtificialFunction(name="sphere", block_dimension=2)
    xp1 = xpbase.Experiment(func, optimizer="OnePlusOne", budget=300, num_workers=2)
    xp2 = xpbase.Experiment(func, optimizer="RandomSearch", budget=300, num_workers=2)
    assert xp1 != xp2
github facebookresearch / nevergrad / nevergrad / benchmark / experiments.py View on Github external
def spsa_benchmark(seed: Optional[int] = None) -> Iterator[Experiment]:
    """All optimizers on ill cond problems. This benchmark is based on the noise benchmark.
    """
    seedg = create_seed_generator(seed)
    optims = sorted(x for x, y in ng.optimizers.registry.items() if (any(e in x for e in "TBPSA SPSA".split()) and "iscr" not in x))
    for budget in [500, 1000, 2000, 4000, 8000, 16000, 32000, 64000, 128000]:
        for optim in optims:
            for rotation in [True, False]:
                for name in ["sphere", "sphere4", "cigar"]:
                    function = ArtificialFunction(name=name, rotation=rotation, block_dimension=20, noise_level=10)
                    yield Experiment(function, optim, budget=budget, seed=next(seedg))
github facebookresearch / nevergrad / nevergrad / benchmark / frozenexperiments.py View on Github external
def dim10_select_one_feature(seed: Optional[int] = None) -> Iterator[Experiment]:    # One and only one variable matters - LHS wins.
    # prepare list of parameters to sweep for independent variables
    seedg = create_seed_generator(seed)
    names = ["sphere"]
    optims = sorted(x for x, y in optimization.registry.items() if y.one_shot and "arg" not in x and "mal" not in x)
    functions = [ArtificialFunction(name, block_dimension=bd, num_blocks=n_blocks, useless_variables=bd * uv_factor * n_blocks)
                 for name in names for bd in [1] for uv_factor in [10] for n_blocks in [1]]
    # functions are not initialized and duplicated at yield time, they will be initialized in the experiment (no need to seed here)
    for func in functions:
        for optim in optims:
            for budget in [8, 10, 12, 14, 16, 18, 20]:
                # duplicate -> each Experiment has different randomness
                yield Experiment(func.duplicate(), optim, budget=budget, num_workers=1, seed=next(seedg))
github facebookresearch / nevergrad / nevergrad / benchmark / frozenexperiments.py View on Github external
def dim10_select_two_features(seed: Optional[int] = None) -> Iterator[Experiment]:     # 2 variables matter - Scrambled Hammersley rules.
    # prepare list of parameters to sweep for independent variables
    seedg = create_seed_generator(seed)
    names = ["sphere"]
    optims = sorted(x for x, y in optimization.registry.items() if y.one_shot and "arg" not in x and "mal" not in x)
    functions = [ArtificialFunction(name, block_dimension=bd, num_blocks=n_blocks, useless_variables=bd * uv_factor * n_blocks)
                 for name in names for bd in [2] for uv_factor in [5] for n_blocks in [1]]
    # functions are not initialized and duplicated at yield time, they will be initialized in the experiment (no need to seed here)
    for func in functions:
        for optim in optims:
            for budget in [4, 8, 16, 32]:
                # duplicate -> each Experiment has different randomness
                yield Experiment(func.duplicate(), optim, budget=budget, num_workers=1, seed=next(seedg))
github facebookresearch / nevergrad / nevergrad / benchmark / experiments.py View on Github external
def multiobjective_example(seed: Optional[int] = None) -> Iterator[Experiment]:
    # prepare list of parameters to sweep for independent variables
    seedg = create_seed_generator(seed)
    optims = ["NaiveTBPSA", "PSO", "DE", "SQP", "LhsDE", "RandomSearch", "NGO", "CMA", "BO", "LBO", "SQP", "RSQP"]
    mofuncs: List[PackedFunctions] = []
    for name1 in ["sphere", "cigar"]:
        for name2 in ["sphere", "cigar", "hm"]:
            mofuncs += [PackedFunctions([ArtificialFunction(name1, block_dimension=7),
                                         ArtificialFunction(name2, block_dimension=7)],
                                        upper_bounds=np.array((50., 50.)))]
        for name3 in ["sphere", "ellipsoid"]:
            mofuncs += [PackedFunctions([ArtificialFunction(name1, block_dimension=6),
                                         ArtificialFunction(name3, block_dimension=6),
                                         ArtificialFunction(name2, block_dimension=6)],
                                        upper_bounds=np.array((100, 100, 1000.)))]
    # functions are not initialized and duplicated at yield time, they will be initialized in the experiment (no need to seed here)
    for mofunc in mofuncs:
        for optim in optims:
            for budget in list(range(100, 2901, 400)):
                yield Experiment(mofunc.to_instrumented(), optim, budget=budget, num_workers=1, seed=next(seedg))
github facebookresearch / nevergrad / nevergrad / benchmark / experiments.py View on Github external
def multiobjective_example(seed: Optional[int] = None) -> Iterator[Experiment]:
    # prepare list of parameters to sweep for independent variables
    seedg = create_seed_generator(seed)
    optims = ["NaiveTBPSA", "PSO", "DE", "SQP", "LhsDE", "RandomSearch", "NGO", "CMA", "BO", "LBO", "SQP", "RSQP"]
    mofuncs: List[PackedFunctions] = []
    for name1 in ["sphere", "cigar"]:
        for name2 in ["sphere", "cigar", "hm"]:
            mofuncs += [PackedFunctions([ArtificialFunction(name1, block_dimension=7),
                                         ArtificialFunction(name2, block_dimension=7)],
                                        upper_bounds=np.array((50., 50.)))]
        for name3 in ["sphere", "ellipsoid"]:
            mofuncs += [PackedFunctions([ArtificialFunction(name1, block_dimension=6),
                                         ArtificialFunction(name3, block_dimension=6),
                                         ArtificialFunction(name2, block_dimension=6)],
                                        upper_bounds=np.array((100, 100, 1000.)))]
    # functions are not initialized and duplicated at yield time, they will be initialized in the experiment (no need to seed here)
    for mofunc in mofuncs:
        for optim in optims:
            for budget in list(range(100, 2901, 400)):
                yield Experiment(mofunc.to_instrumented(), optim, budget=budget, num_workers=1, seed=next(seedg))
github facebookresearch / nevergrad / nevergrad / benchmark / experiments.py View on Github external
def oneshot(seed: Optional[int] = None) -> Iterator[Experiment]:
    # prepare list of parameters to sweep for independent variables
    seedg = create_seed_generator(seed)
    names = ["sphere", "rastrigin", "cigar"]
    optims = sorted(x for x, y in ng.optimizers.registry.items() if y.one_shot)
    functions = [
        ArtificialFunction(name, block_dimension=bd, useless_variables=bd * uv_factor)
        for name in names
        for bd in [3, 25]
        for uv_factor in [0, 5]
    ]
    # functions are not initialized and duplicated at yield time, they will be initialized in the experiment
    for func in functions:
        for optim in optims:
            for budget in [30, 100, 3000]:
                # duplicate -> each Experiment has different randomness
                yield Experiment(func.duplicate(), optim, budget=budget, num_workers=budget, seed=next(seedg))
github facebookresearch / nevergrad / nevergrad / benchmark / cec2019_experiments.py View on Github external
def oneshotcec(seed: Optional[int] = None) -> Iterator[Experiment]:
    seedg = create_seed_generator(seed)
    names = ["sphere", "rastrigin", "cigar"]
    optims = sorted(x for x, y in optimization.registry.items() if y.one_shot and
                    not any(z in x for z in ["Large", "Small", "Stupid", "Zero"]))
    optims.append("CustomOptimizer")
    functions = [ArtificialFunction(name, block_dimension=bd, useless_variables=bd * uv_factor)
                 for name in names for bd in [3, 25] for uv_factor in [0, 5]]
    for func in functions:
        for optim in optims:
            for budget in [30, 100, 300, 1000, 3000]:
                yield Experiment(func.duplicate(), optim, budget=budget, num_workers=budget, seed=next(seedg))
github facebookresearch / nevergrad / nevergrad / benchmark / experiments.py View on Github external
"""
    seedg = create_seed_generator(seed)
    optims = ["NaiveTBPSA", "TBPSA", "NGO", "CMA", "PSO", "DE", "MiniDE", "QrDE", "MiniQrDE", "LhsDE", "OnePlusOne",
              "TwoPointsDE", "OnePointDE", "AlmostRotationInvariantDE", "RotationInvariantDE"]
    if not parallel:
        optims += ["SQP", "Cobyla", "Powell", "chainCMASQP"]
    #optims += [x for x, y in ng.optimizers.registry.items() if "chain" in x]
    names = ["hm", "rastrigin", "griewank", "rosenbrock", "ackley", "lunacek", "deceptivemultimodal", "bucherastrigin", "multipeak"]
    names += ["sphere", "doublelinearslope", "stepdoublelinearslope"]
    names += ["cigar", "altcigar", "ellipsoid", "altellipsoid", "stepellipsoid", "discus", "bentcigar"]
    names += ["deceptiveillcond", "deceptivemultimodal", "deceptivepath"]
    # Deceptive path is related to the sharp ridge function; there is a long path to the optimum.
    # Deceptive illcond is related to the difference of powers function; the conditioning varies as we get closer to the optimum.
    # Deceptive multimodal is related to the Weierstrass function and to the Schaffers function.
    functions = [
        ArtificialFunction(name, block_dimension=d, rotation=rotation, noise_level=100 if noise else 0) for name in names 
        for rotation in [True, False]
        for num_blocks in [1]
        for d in ([100, 1000, 3000] if hd else [2, 10, 50])
    ]
    for optim in optims:
        for function in functions:
            for budget in [50, 200, 800, 3200, 12800] if (not big and not noise) else [40000, 80000]:
                xp = Experiment(function.duplicate(), optim, num_workers=100 if parallel else 1,
                        budget=budget, seed=next(seedg))
                if not xp.is_incoherent:
                    yield xp